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1 Introduction

Definition 1.1. Let K be a finite degree algebraic field extension of Q. Then K is said to
be a number field.

Example 1.2. Let f(X) ∈ C[X] be a monic irreducible polynomial. If α ∈ C is a root of
f(X) then Q(α) is a number field. To see this, consider the following ring homomorphism

ϕ : Q[X]→ Q[α]

X 7→ α

Then kerϕ = (f) and thus Q[X]/(f) ∼= Q[α]. Now Q[X] is a PID and (f) is maximal since
f is irreducible. Hence Q[X]/(f) is a field and we may write Q[X]/(f) ∼= Q(α). Finally,
[Q(α) : Q] = deg f since Q(α) has a Q-basis of { 1, α, α2, . . . , αdeg f−1 }.

Example 1.3. Let α =
√

2. Then α satisfies the monic irreducible polynomial X2− 2 over
Q. Hence Q(

√
2) is a number field.

Example 1.4. Let f(X) = X3 − 2 ∈ Q[X]. Then f has roots α1 = 3
√

2, α2 = ω 3
√

2, α3 =
ω2 3
√

2 where ω is the primitive cube root of unity. Then

Q(αi) ∼= Q[X]/(f)

are all number fields but Q[α1],Q[α2],Q[α3] are all distinct subfields of Q.

Definition 1.5. An algebraic number is any element of a number field.

Definition 1.6. Let K be a number field. If α ∈ K satisfies a monic polynomial over Z
then α is said to be an algebraic integer. The set of all algebraic integers of K is denoted
OK .

Proposition 1.7. Let K be a number field. Then α is an algebraic integer of K if and only
if its minimal polynomial over Q has integer coefficients.

Proof. Suppose that the minimal polynomial of α has integer coefficients. Then, by defini-
tion, α is an algebraic integer.

Conversely, suppose that α is an algebraic integer. Then α is a root of a monic polynomial
with integer coefficients, say f(X). Let g(X) be its minimal polynomial. Then g(X)|f(X).
Then there exists a monic polynomial h(X) ∈ Q[X] such that g(X)h(X) = f(X). We need
to show that g(X) also has integer coefficients. Suppose that it doesn’t. Then there exists
a prime number which divides the denominator of one of the coefficients of g. Let u be the
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least integer such that pug(X) has no coefficients whose denominators are divisible by p.
Similarly, let v be the same for h(X). Then

pug(X)pvh(X) = pu+vg(X)h(X) ≡ 0 (mod p) ∈ Fp[X]

This is a contradiction since pug(X) and pvh(X) are non-zero polynomials whose product
is 0 but Fp(X) has no zero divisors.

Corollary 1.8. The algebraic integers of Q are exactly Z.

Proof. Let a/b ∈ Q. Then its minimal polynomial over Q is X − a/b. Now, the previous
proposition implies that a/b is an algebraic integer if and only if b = 1.

Theorem 1.9. Let K be a number field. Then α ∈ K is an algebraic integer if and only if
Z[α] is finitely generated.

Proof. Suppose that α is an algebraic integer. Let f(X) be its minimal polynomial of degree
n. Then by Proposition 1.7, f(X) is monic with integer coefficients. Now any αu can be
written as a Z-linear combination of { 1, α, α2, . . . , αn−1 } for all u ≥ n. Hence

Z[α] = Z⊕ Zα⊕ · · · ⊕ Zαn−1

whence Z[α] is finitely generated.
Conversely, suppose that Z[α] is finitely generated. Let ai, . . . , an be generators for Z[α].

Then there exists polynomials fi(X) ∈ Z[X] such that ai = fi(α) for all 1 ≤ i ≤ n. Fix
some natural number N > deg fi for all i. Then we may write

αN =
n∑
i=1

biai

for some bi ∈ Z. That is to say

αN −
n∑
i=1

bifi(α) = 0

Taking

f(X) = XN −
n∑
i=1

bifi(X)

we may see that α is an algebraic integer.

Corollary 1.10. Let K be a number field. Then OK is a ring.

Proof. Let α, β ∈ OK . Then the previous theorem implies that Z[α] and Z[β] are finitely
generated whence Z[α, β] is finitely generated. Z[α, β] is a ring and thus α± β and αβ are
in Z[α, β]. Z[α±β] and Z[αβ] are subgroups of Z[α, β] and are hence finitely generated. By
the opposite implication of the previous theorem, we see that α± β and αβ are in OK .

Theorem 1.11. Let K = Q(
√
d) for some square-free integer d. Then

OK =

{
{ a+ b

√
d | a, b ∈ Z } if d 6≡ 1 (mod 4){

a+ b
(

1+
√
d

2

) ∣∣∣ a, b ∈ Z
}

if d ≡ 1 (mod 4)
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Proof. Suppose α ∈ K is an algebraic integer. Then α = a + b
√
d for some a, b ∈ Q and

satisfies some monic irreducible polynomial f(X) over Z. The conjugate of α is a − b
√
d

and thus its minimal polynomial is

f(X) = X2 + (2a)X + (a2 − b2d)

Necessarily, 2a, a2−b2d ∈ Z. This implies that either a ∈ Z or a = A/2 for some odd integer
A ∈ Z. In the first case, we must then have that b2d ∈ Z. Since d is square-free, this implies
that b ∈ Z. Hence at the very least, the algebraic integers contain { a+ b

√
d | a, b ∈ Z }.

In the second case we have

A2

4
− b2d ∈ Z (1)

Multiplying through by 4 we see that A2−4b2d ∈ 4Z. We must therefore have that 4b2d ∈ Z.
Since d is square-free, this implies that 2b ∈ Z, say 2b = B. Equation 1 implies that b 6∈ Z
so B is an odd integer. Then

A2 −B2d ≡ 0 (mod 4)

with A and B both odd integers. But any odd integer is congruent to 1 modulo 4 so

1− d ≡ 0 (mod 4)

Now this is only possible if d ≡ 1 (mod 4) and the result follows.

2 Norms, Traces and Discriminants

Definition 2.1. let L/K be a finite extension of number fields. Given α ∈ L, consider the
K-linear map

µα : L→ L

x 7→ αx

We define the norm of α, denoted NL/K(α) to be the determinant of the matrix of µα.
Furthermore, we define the trace of α, denoted TrL/K(α), to be the trace of the matrix of
µα. Finally, we define the characteristic polynomial of α, denoted χL/K(α)(X), to be
the characteristic polynomial of the matrix of µα.

Example 2.2. Let K = Q(2). Let α ∈ Q(2) and fix the Q-basis of K, { 1,
√

2 }. To calculate
the norm and trace of α, it suffices to examine the effect of α on the basis elements. We
can write α = a+ b

√
2 for some a, b ∈ Q. Then multiplication by α sends 1 to a+ b

√
2 and

sends
√

2 to a
√

2 + 2b. The matrix of µα in the chosen basis is thus

M =

(
a b
2b a

)
Hence NK/Q(α) = detM = a2 − 2b2 and TrK/Q(α) = Tr M = 2a. We now calculate the
characteristic polynomial of α :

χL/K(α)(X) = det (XI −M)

=

∣∣∣∣ X − a b
2b X − a

∣∣∣∣
= (X − a)2 − 2b2

= X2 − 2aX + a2 − 2b2
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We see that the coefficient of X is minus the trace of α and its constant term is the norm
of alpha.

Lemma 2.3. Let K be a number field and f(X) ∈ K[X] an irreducible polynomial. Then
f(X) cannot have a multiple root in an algebraic closure of K.

Proof. Let K be an algebraic closure of K. Suppose that f(X) has a multiple root in K,
say α. We may write f(X) = (X−α)mg(X) for some m ≥ 2 and g(X) ∈ K[X]. Calculating
the formal derivative of f(X) we have

f ′(X) = m(X − α)m−1g(X) + (X − α)mg′(X)

Hence f ′(X) and f(X) have the factor (X−α)m−1 in common in K[X]. This implies that α
is a root of both f(X) and f ′(X) meaning the minimal polynomial of α over K divides both
f(X) and f ′(X). But f(X) was assumed to be irreducible so that common factor must be
f(X) itself. Now, deg f ′(X) < deg f(X) meaning f ′(X) is identically zero but this is not
possible since K has characteristic 0.

Theorem 2.4. Let K be a number field and K an algebraic closure of K. If L/K is a finite
extension of degree n then there exist n distinct K-embeddings of L into K.

Proof. We shall prove the theorem by induction on [L : K]. First suppose that L = K(α)
for some α ∈ K. Let f(X) ∈ K[X] be the minimal polynomial of α over K. Then f(X)
has degree n and, by Lemma 2.3, it has n distinct roots in K, say α = α1, . . . , αn. We thus
have n distinct K-embeddings given by

σi : L→ K

α 7→ αi

Now suppose that m < n and that for any degree m extension of K, say F , there exist
m-distinct K-embeddings of F into K. Let L/K be an extension of degree n and suppose
that α ∈ L. We have that K ⊆ K(α) ⊆ L. Let q = [K(α) : K]. From the previous
paragraph, we know that there exists q distinct embeddings of K(α) into K. Since K(α) is
isomorphic to K(σi(α)) for all K-embeddings σi : K(α) → K, there exists an extension of
σi to an isomorphism τi such that the following diagram commutes

L Li

K(α) K(σi(α))

K

τi

σi|K(α)

By the tower law we have [L : K(α)] = [L : K(σi(α))] = n/q. Therefore, by the induction
hypothesis, there exist n/q distinct K(σi(α))−embeddings of Li into K, say θij for 1 ≤ j ≤
n/q. Then θij ◦ τi for i = 1, . . . , q and j = 1, . . . , n/q give n distinct K-embeddings of L into
K.

Corollary 2.5. Let K be a number field of degree n. Then there exist n distinct Q-
embeddings of K into C.

Definition 2.6. Let L/K be an extension of number fields of degree n. Let α ∈ L and
let σ1, . . . , σn be distinct K-embeddings of L into an algebraic closure of K, say K. Then
σ1(α), . . . , σn(α) are the conjugates of α.
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Proposition 2.7. Let L/K be an extension of number fields and K an algebraic closure of
K. Let σ1, . . . , σn be the distinct K-embeddings of L into K. Then for all α ∈ L we have

NL/K(α) =
n∏
i=1

σi(α), TrL/K(α) =
n∑
i=1

σi(α)

Proof. Let f(X) be the minimal polynomial of α over K and let m be its degree. Let
χK(α)/K(α) be the characteristic polynomial of α. We first claim that f(X) = χK(α)/K(α)(X).
Both polynomials are monic by their definition and the degree of χK(α)/K(α) is also m. Let
µα be the linear map given by multiplication of α. By the Cayley-Hamilton theorem, we
have that χK(α)/K(µα) = 0. It is easy to see that χK(α)/K(α)(µα) = µχK(α)/K

(α). Hence α is
a root of χK(α)/K(X). This implies that f(X)|χK(α)/K(X). But these polynomials have the
same degree and are both monic so we must have that f(X) = χK(α)/K(X).

We now construct the matrix of µα in a K-basis of L. Let { 1, . . . , αm−1 } be a K-basis
of K(α). If k is the degree of L/K(α) then let { β1, . . . , βk } be a K(α)-basis of L. Then
{αiβj } for 0 ≤ i ≤ m and 1 ≤ j ≤ k is a K-basis of L. Then the matrix of µα can be
written as

µα =


B 0 · · · 0
0 B · · · 0

0 0
... 0

︸ ︷︷ ︸
k times

0 0 · · · B

 , B =


0 0 · · · a0

1 0 · · · a1

0 1
. . . a2

... · · · · · · ...
0 · · · · · · am−1


wehre ai are the coefficients of the minimal polynomial of α. It then follows that

NL/K(α) = NK(α)/K(α)k (2)

TrL/K(α) = kTrK(α)/K(α) (3)

χL/K(α)(X) = χK(α)/K(α)(X)k = f(X)k (4)

Hence

f(X) = (X − α1) . . . (X − αm)

= Xm −

(
m∑
i=1

αi

)
Xm−1 + · · · ±

m∏
i=1

αi

= Xm − TrK(α)/K(α)Xm−1 + · · ·+±NK(α)/K(α)

This, together with the previous equations, gives us

NL/K(α) =

(
m∏
i=1

αi

)k

TrL/K(α) = k
m∑
i=1

αi

Now, f(X) has m distinct roots in K and this determines the m distinct K-embeddings
of K(α) into K. By Theorem 2.4, there are k ways in which we can extend these to K-
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embeddings of L. Hence

NL/K(α) =
n∏
i=1

σi(α)

TrL/K(α) =
n∑
i=1

σi(α)

Example 2.8. Consider the number field extensions Q ⊆ Q(i) ⊆ Q(i,
√

2). There are four
embeddings of Q(i,

√
2) into C given by

σ1 : i 7→ i,
√

2 7→
√

2

σ2 : i 7→ −i,
√

2 7→
√

2

σ3 : i 7→ i,
√

2 7→ −
√

2

σ4 : i 7→ −i,
√

2 7→ −
√

2

We have that

NQ(i)/Q(a+ ib) = σ1(a+ ib)σ2(a+ ib) = a2 + b2

NQ(i,
√

2)/Q(a+ ib) = σ1(a+ ib)σ2(a+ ib)σ3(a+ ib)σ4(a+ ib) = (a2 + b2)2

Corollary 2.9. Let K be a number field and α ∈ K an algebraic integer. Then the norm
and trace of α are rational integers.

Proof. By the proof of the theorem, the characteristic polynomyial of α is a power of the
minimal polynomial and thus has rational integer coefficients.

Corollary 2.10. Let K be a number field and α ∈ OK. Then the norm of α is equal to ±1
if and only if α is a unit in OK.

Proof. First suppose that the norm of α is equal to ±1. Let f(X) =
∑n

i=0 aiX
i be its

minimal polynomial over K. Then f(X) has constant term ±1. We claim that 1/α is a root
of the polynomial 1 + an−1X + · · · ±Xn. We have that

g(X) = Xn(X−n + an−1X
−1 + · · · ± 1) = Xnf(1/X)

Hence g(1/α) = (1/α)nf(α) = 0. Clearly, g(X) ∈ Z[X]. If the coefficient of the leading
term is 1 then we are done, if not then −g(X) is also a monic polynomial with rational
integer coefficients with 1/α as a root and thus α is a unit in OK .

Conversely, suppose that α is a unit in OK . Since α is a unit, we have that 1/α ∈ OK .
Then

1 = NK/Q(1) = NK/Q(α) NK/Q(1/α)

By the previous corollary, we know that both NK/Q(α) and NK/Q(1/α) are elements of Z so
we must have that NK/Q(α) = ±1.

Lemma 2.11. Let K be a number field. Then QOK = K.
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Proof. It is trivial from the definition of K that QOK ∈ K.
Conversely, suppose that α ∈ K. We claim that there exists a d ∈ Z such that αd ∈ OK .
Indeed, let f(X) be the minimal polynomial of α over Q. Let d be the least common multiple
of the denominators of the coefficients of f(X). Then

g(X) = ddeg ff(X/d)

is a monic polynomial with coefficients in Z and αd as a root. Hence αd ∈ OK
Theorem 2.12. Let K be a number field. Then OK is a free Abelian group of rank n =
[K : Q].

Proof. Fix a Q-basis of K, say {α1, . . . , αn }. By Lemma 2.11, each αi gives rise to an
algebraic integer βi. Furthermore, it is easy to see that the set { β1, . . . , βn } is still Q-
linearly independent and spans K. Hence any x ∈ OK can be written in the form

x =
n∑
i=1

ciβi

for some ci ∈ Q. We claim that the denominators of the ci are bounded for all x ∈ OK and
ci ∈ Q. Suppose the contrary. Then there exists a sequence {xj }j≥1 where

xj =
n∑
i=1

cijβi

for some cij ∈ Q such that the greatest denominator of the cij tends to infinity as j →∞.
Now let σ1, . . . , σn be the distinct Q-embeddings of K into an algebraic closure of K,

say K. Then

NK/Q(xj) =
n∏

m=1

σm(xj)

=
n∏

m=1

σm

(
n∑
i=1

cijβi

)

=
n∏

m=1

n∑
i=1

cijσm(βi)

Now, NK/Q(xij) is necessarily an integer and the right hand side is a homogeneous polynomial
in the cij with fixed coefficients. Hence we must have that the denominators are bounded,
say by some constant B. We then have that

OK ⊆
1

B

n⊕
i=1

Zβi

The right hand side of this inclusion is a free Abelian group which means OK must be a free
Abelian group. Since OK contains a set of n linearly independent elements, it must have
rank n.

Definition 2.13. Let L/K be an extension of number fields and S = {x1, . . . , xn } ⊆ L.
We define the discriminant of S to be

∆L/K(S) = det TrL/K(xixj)
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Proposition 2.14. Let L/K be an extension of number fields and let α1, . . . , αn and β1, . . . , βn
be bases for this extension. Suppose that C = (cij) is the change of basis matrix from the
β-basis to the α-basis. Then

∆L/K(α1, . . . , αn) = det(C)2∆L/K(β, . . . , βn)

Proof. We have that

αiαk =
n∑
j=1

n∑
l=1

cijcklβjβl

Passing to the trace yields

TrL/K(αiαk) =
n∑
j=1

n∑
l=1

cijckl TrL/K(βjβl)

Let A = (TrL/K(αiαj)) and B = TrL/K(βiβj). Then the above calculations imply that
A = CBCt. The proposition then follows by passing to the determinant.

Proposition 2.15. Let L/K be an extension of number fields and let σ1, . . . , σn be the
distinct K-embeddings of L into an algebraic closure of K, say K. If S = {x1, . . . , xn } ⊆ L
then

∆L/K(S) = [det σi(xj)]
2

Proof. By Proposition 2.7, we have

TrL/K(xixj) =
n∑
k=1

σk(xixj) =
n∑
k=1

σk(xi)σk(xj)

If A is the matrix whose (ij)th entry is σi(xj) then (TrL/K(xixj)) = AAt. The proposition
then follows by passing to the determinant in the previous equation.

Proposition 2.16. Let L/K be an extension of number fields and let S = {α1, . . . , αn } ⊆
L. If ∆L/K(S) 6= 0 then S is linearly independent. Conversely, if S = {α1, . . . , αn } is a
K-basis for L then ∆L/K(S) 6= 0.

Proof. First suppose that S = {α1, . . . , αn } are linearly dependent. Then there exists
a1, . . . , an ∈ K, not all zero, such that

0 =
n∑
i=1

aiαi

Hence for any 1 ≤ j ≤ n we have

0 = TrL/K(αj

n∑
i=1

aiαi) =
n∑
i=1

ai TrL/K(αiαj)

Writing this as a matrix equation yields

(TrL/K(αiαj))

 a1
...
an

 = 0
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Which implies that ∆L/K(S) = det(TrL/K(αiαj)) = 0.
Conversely, suppose that S = {α1, . . . , αn } is a K-basis for L and that ∆L/K(S) = 0.

Then there exists a1, . . . , an ∈ K such that for all 1 ≤ j ≤ n we have
∑n

i=1 ai TrL/K(αiαj) =
0. Now set α =

∑n
i=1 aiαi. α is clearly non-zero since the αi are a K-basis for L and the ai

are not all zero. Now let β ∈ L. We may write β =
∑n

i=1 biαi for some bi ∈ K. Then

TrL/K(βα) = TrL/K(α
n∑
i=1

biαi)

=
n∑
i=1

bi TrL/K(ααi)

=
n∑
i=1

bi TrL/K(
n∑
j=1

ajαjαi)

=
n∑
i=1

n∑
j=1

biaj TrL/K(αjαi) = 0

In particular, we may take β = α−1. Then TrL/K(βα) = TrL/K(1) = 0. This is a con-
tradiction to the fact that the characteristic of K is zero. We must therefore have that
∆L/K(S) 6= 0.

Proposition 2.17. Let K be a number field and suppose that L = K(α) for some alge-
braic number α. Let f(X) ∈ K[X] be the minimal polynomial of α over K. Let S =
{ 1, α, α2, . . . , αn−1 } be the power K-basis for L. If α = α1, . . . , αn are the roots of f(X) in
an algebraic closure of K then

∆L/K(S) = disc f(X) =
∏
i<j

(αi − αj)2

Proof. Let σ1, . . . , σn be the distinct K-embeddings of L into an algebraic closure of K
where σi(α) = αi. Then for all 0 ≤ j ≤ n − 1 we have σi(α

j) = αji . Proposition 2.7 then
implies that

∆L/K(S) =

det


1 α1 α2

1 · · · αn−1
1

1 α2 α2
2 · · · αn−1

2
...

...
... · · · ...

1 αn α2
n · · · αn−1

n




2

This matrix on the right hand side is the Vandermonde matrix whose determinant is given
by
∏

i<j αj − αi. The square of this is exactly the discriminant of f(X).

Corollary 2.18. Let K be a number field and L = K(α) for some algebraic number α. Let
f(X) ∈ K[X] be the minimal polynomial of α over K. Let S = { 1, α, α2, . . . , αn−1 } be the
power K-basis for L. Then

∆L/K(S) = (−1)(
n
2) NL/K(f ′(α))

Proof. Let α = α1, . . . , αn be the roots of f(X) in an algebraic closure of K. Then

∆L/K(S) =
∏
i<j

(αi − αj)2 = (−1)(
n
2)
∏
i 6=j

(αi − αj) = (−1)(
n
2)

n∏
i=1

∏
j 6=i

(αi − αj)
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Now, f(X) = (X−x1) . . . (X−αn) and thus f ′(X) =
∑n

k=1

∏
j 6=k(X−αj). If we substitute

αi for X in f ′(X), only the k = i term remains and we get f ′(αi) =
∏

j 6=i(αi − αj). Hence

∆L/K(S) = (−1)(
n
2)

n∏
i=1

f ′(αi)

Furthermore, if σ1, . . . , σn are the distinct K-embeddings of L into an algebraic closure of
K, we have f ′(αi) = f ′(σi(α)) = σi(f

′(α)). We thus obtain

∆L/K(S) = (−1)(
n
2)

n∏
i=1

σi(f
′(α)) = (−1)(

n
2) NL/K(f ′(α))

Definition 2.19. Let K be an extension of number fields. Suppose that {α1, . . . , αn } ⊆ K
is a Q-basis for K. Then such a basis is an integral basis if

OK = Zα1 ⊕ · · · ⊕ Zαn
Remark. Theorem 2.12 guarantees the existence of an integral basis for any number field.

Lemma 2.20. Let K be a number field. Then the discriminant of any integral basis of K
is invariant under a change of basis to any other integral basis.

Proof. Let S = {α1, . . . , αn } and T = { β1, . . . , βn } be integral bases for K. By Proposition
2.14, we have

∆K/Q(S) = det(C)2∆K/Q(T )

where C is the change of basis matrix that sends the β-basis to the α-basis. Now, we must
have that detC is a unit in Z meaning it is equal to ±1. This proves the lemma.

Definition 2.21. Let K be a number field. We define the discriminant of K, denoted
∆K , to be the discriminant of any integral basis of K.

Theorem 2.22 (Stickelberger’s Theorem). Let K be a number field. Then ∆K is congruent
to 0 or 1 modulo 4.

Proof. Let S = {α1, . . . , αn } be an integral basis for K. Let σ1, . . . , σn be the distinct
embeddings of K into an algebraic closure of Q. Then

∆K = ∆L/K(S) = [det(σi(αj))]
2 =

[∑
π∈Sn

n∏
i=1

σi(απ(i))

]2

We may split the sum up into even and odd permutations as follows

P =
∑
π∈Sn

sgn(π)=1

n∏
i=1

σi(απ(i)), N =
∑
π∈Sn

sgn(π)=−1

n∏
i=1

σi(απ(i))

Now let L be a Galois extension of K. Then given any σ ∈ Gal(L/Q), we have that σ
permutes the embeddings σi. Hence we must have one of the following: σ(P ) = P, σ(N) = N
or σ(P ) = N, σ(N) = P . In both cases, we see that σ fixes both P +N and PN . By Galois
Theory, this implies that P +N and PN are both rational numbers. Furthermore, it is easy
to see that P and N are rational integers since the αi are algebraic integers. Finally,

∆K = (P −N)2 = (P +N)2 − 4PN

So we must have that ∆K ≡ 0, 1 (mod 4).
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3 Ideal Factorisation

In this section, by integral domain, we shall mean an integral domain that is not a field.

Lemma 3.1. Let R be a ring and I /R a prime ideal. Suppose that J1, . . . , Jn /R such that
J1 . . . JN ⊆ I. Then there exists at least one 1 ≤ i ≤ n such that Ji ⊆ I.

Proof. Let j =
∑m

k=1 j1k . . . jnk ∈ J1 . . . Jn where jik ∈ Ji. By hypothesis, we have that
j ∈ I. By the definition of an ideal, we have that j1k . . . jnk ∈ I for all 1 ≤ k ≤ m. By
the definition of a prime ideal, we must have that at least one of the jik ∈ I. But jik is an
arbitrary element of Ji and thus Ji ∈ I.

Lemma 3.2. Let R be a Noetherian integral domain and I / R a non-zero ideal. Then I
contains a product of non-zero prime ideals.

Proof. Let S be the set of all non-zero ideals of R that do not contain a product of prime
ideals. Since R is Noetherian, S contains a maximal element, say I. By definition, I is not
prime so there must exist some x, y ∈ R\I such that xy ∈ I. Then (x) + I and (y) + I
are not in S by the maximality of I. They thus each contain a product of prime ideals.
Now, since R is an integral domain, we have that ((x) + I)((y) + I) is nonzero. But this
ideal product is contained in I which implies that I contains a product of prime ideals - a
contradiction.

Definition 3.3. Let R be an integral domain and K its field of fractions. We define a
fractional ideal of R to be an R-submodule of K, say M , such that dM ⊆ A for some
d ∈ A\ { 0 }. Equivalently, any fractional ideal is given by

1

d
I = {x ∈ K | dx ∈ I }

where I / R is an ideal.

Remark. Henceforth, we shall refer to ordinary ideals as integral ideals to distinguish
them from fractional ideals.

Lemma 3.4. Let R be Noetherian. Then the fractional ideals of R are the finitely generated
R-submodules of K.

Proof. First suppose that M is a fractional ideal. Then we may write M = 1/dI for some
integral ideal I. Since R is Noetherian, I is finitely generated. Then M is a finitely generated
R-submodule of K.

Conversely, suppose that M is a finitely generated R-submodule of K. Them M =
〈m1, . . . ,mn〉 for some m1, . . . ,mn ∈M . Now each mi = 1/ri for some ri ∈ R. So we have(

n∏
i=1

ri

)
M ⊆ R

which is exactly what it means for M to be a fractional ideal of R.

Definition 3.5. let R be a ring, L its field of fractions and M and N be fractional ideals
of R. Then we define the following fractional ideals:

MN =

{
k∑
i=1

mini

∣∣∣∣∣ mi ∈M,ni ∈ N, k ∈ N

}
M ′ = {x ∈ K | xM ⊆ R }

11



Definition 3.6. Let R be an integral domain. We say that R is a Dedekind domain if it
is Noetherian, integrally closed and every non-zero prime ideal is maximal.

Lemma 3.7. Let R be a unique factorisation domain. Then R is integrally closed in its
field of fractions K.

Proof. Let α ∈ K be integral over R. Then α satisfies a monic polynomial

Xn + an−1X
n−1 + · · ·+ a0

with each ai ∈ R. Since R is a UFD, we may write α = c/d with gcd(c, d) ∈ R×. We then
have that ( c

d

)n
+ an−1

( c
d

)n−1

+ · · ·+ a0

Multiplying through by dn we have

cn + dz = 0

for some z ∈ R. It follows that d|cn. Now, if d is not a unit then gcd(c, d) 6∈ R× so we must
have that d is a unit. But then α = cd−1 ∈ R.

Proposition 3.8. Let R be a principal ideal domain. Then R is a Dedekind domain.

Proof. Clearly, any PID is necessarily Noetherian. Furthermore Lemma 3.7 implies that R
is integrally closed since any PID is necessarily a UFD. Finally, by a theorem of elementary
ring theory, every prime ideal in a PID is maximal. Hence R is a Dedekind domain.

Proposition 3.9. Let R be a Dedekind domain with field of fractions K. If p is a non-zero
prime ideal of R then

1. p′ 6= R

2. pp′ 6= p

3. pp′ = R

Proof.

Part 1: Let a ∈ p\ { 0 }. By Lemma 3.2 we can write

(a) ⊇ q1 . . . qn

for some non-zero prime ideals q1, . . . , qn and n minimal. Then by Lemma 3.1 we have
that, up to renumbering, q1 ⊆ p. But q1 is a non-zero prime ideal and is thus maximal by
hypothesis. We must then have that q1 = p. Now denote b = q2 . . . qn. Then

pb ⊆ (a) ⊆ p

Furthermore, b 6⊆ (a) by minimality of n. Hence we may choose b ∈ b such that b 6∈ (a).
Then bp ⊆ (a) whence ba−1p ⊆ R. Hence ba−1 ∈ p′ but ba−1 6∈ R.

Part 2: Suppose that pp′ = p. Fix an x ∈ p′. Then xnp ⊆ p for all n ∈ N. This implies that
R[x] is a fractional ideal of R. By Lemma 3.4, we know that R[x] is a finitely generated
R-submodule of K = Frac(R). Hence, x is integral over R. But R is integrally closed so we
must have that x ∈ R. This implies that p′ ⊆ R. But p is an integral ideal of R so R ⊆ p′.
Hence R = p′ but this contradicts Part 1.

Part 3: Since p is an integral ideal ofR, we have thatR ⊆ p′. This implies that p = pR ⊆ pp′.
Now, p is necessarily maximum so we must have that either pp′ = p or pp′ = R. The former
is a contradiction to Part 2 so the latter necessarily holds.

12



Theorem 3.10. Let R be a Dedekind domain and I / R a non-zero proper ideal. Then
there exists distinct non-zero prime ideals p1, . . . , pn of R and natural numbers e1, . . . , en all
greater than or equal to 1 satisfying

I = pe11 . . . penn

The above decomposition is unique. Furthermore, we express R as the empty product.

Proof. Denote by S the set of all ideals in R that cannot be expressed as a product of prime
ideals. Suppose that S is non-empty. Since R is Noetherian, there exists a maximal element
of S, say b. By hypothesis, b 6= R so there exists a maximal prime ideal p such that b ⊆ p.
By Proposition 3.9 we have bp′ ⊆ pp′ = R. Therefore, bp′ is an integral ideal of R. By
definition, we have that R ⊆ p′. From this we see that b ⊆ bp′. Now, the same proof
as for Part 2 of Proposition 3.9 implies that b 6= bp′ whence bp′ 6∈ S. Then bp′ admits a
factorisation into prime ideals

bp′ = q1 . . . qn

where each qi is a non-zero prime ideal of R. Multiplying both sides by p yields

b = pq1 . . . qn

which implies that b 6∈ S. This is a contradiction so we must have that S is empty. Thus
all non-zero ideals of R admit a factorisation into prime ideals.

To prove uniqueness let I / R be a non-zero proper ideal and suppose that

I = pα1
1 . . . pαmm = qβ11 . . . qβnn

where the pi and the qi are all non-zero prime ideals. We have that p1R = p1. From this
we see that qβ11 . . . qβnn = p1

α1 . . . pαmm ⊆ p1. By Lemma 3.1, there exists a 1 ≤ j ≤ n such
that p1 ⊆ qj. But all non-zero prime ideals are maximal in R so we have that p1 = qj and
α1 = βj. After possibly reordering, we see that

pα2
2 . . . pαmm = qβ22 . . . qβnn

Continuing by induction, we conclude that the factorisations must be the same with n =
m.

Given a number field K, OK is not necessarily a UFD. Indeed, if K = Q(
√
−5) then

OK = Z[
√
−5] and we have that

6 = 2× 3 = (1 +
√
−5)(1−

√
−5)

are two factorisations of 6 whose factors are pairwise non-associate (they do not differ
multiplicatively by a unit) irreducible elements. However, we do have unique factorisation
of non-zero ideals into prime ideals in OK .

Proposition 3.11. Let K be a number field. Then OK is Noetherian.

Proof. By Theorem 2.12, OK is finitely generated as a Z-module. Since Z is Noetherian,
each Z-submodule of OK is also finitely generated. In particular, any integral ideal of
OK is a Z-submodule of OK so the integral ideals are finitely generated. Hence OK is
Noetherian.
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Proposition 3.12. Let K be a number field of degree n. Let a / OK be a non-zero ideal.
Then OK/a is finite.

Proof. We first prove that a ∩ Z 6= { 0 } and is non-empty. To this end, let α ∈ a. Let
f(X) = Xm + · · · + a0 ∈ Z[X] be its minimal polynomial. Clearly, a0 6= 0 since otherwise,
f(X) would be reducible. We then have that

a0 = −(αm + · · ·+ a1α) ∈ a ∩ Z

Now choose a non-zero d ∈ a ∩ Z. By an isomorphism theorem, we have

OK/(d)

a/(d)
∼= OK/a

Now, Theorem 2.12 implies that OK ∼= Zn and thus OK/(d) ∼= (Z/(d))n which is finite.
Hence OK/a is finite.

Corollary 3.13. Let K be a number field. Then OK is a Dedekind domain.

Proof. Proposition 3.11 implies that OK is Noetherian. OK is integrally closed by definition
so it remains to show that every non-zero prime ideal is maximal in OK . To this end, let
p /OK be a non-zero prime ideal. Then the quotient OK/p is a finite integral domain. But
any finite integral domain is necessarily a field and thus p must be maximal.

Definition 3.14. Let K be a number field and a /OK . We define the norm of a to be

N(a) = |OK/a|

Proposition 3.15. Let K be a number field and a /OK a non-zero ideal. Let α1, . . . , αn be
an integral basis for K and β1, . . . , βn a Z-basis for a. If T is the matrix such that β1

...
βn

 = T

 α1
...
αn


Then N(a) = | detT |.

Proof. By the structure theorem for finitely generated modules over a Euclidean domain,
we can write βi = aiαi for all 1 ≤ i ≤ n and some ai ∈ Z. Then the diagonal of T consists
of the ai and the rest of the entries are zero. We have that

|OK/a| = |(Z/(α1)⊕ · · · ⊕ Z/(αn))/(Z/(a1α1)⊕ · · · ⊕ Z/(anαn))|
= |Z/(a1)⊕ · · · ⊕ Z/(an)|
= |a1 . . . an|
= | detT |

Corollary 3.16. Let K be a number field of degree n and α1, . . . , αn generators for some
ideal I /OK as a Z-module. Then

∆K/Q({α1, . . . , αn }) = N(I)2∆K
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Proof. This follows directly from Proposition 2.14 and Proposition 3.15.

Proposition 3.17. Let K be a number field of degree n and (a) / OK a principal ideal for
some non-zero generator a ∈ OK. Then

N((a)) = |NK/Q(a)|

Remark. The above norm is multiplicative. The proof of this fact is omitted.

Proof. Let α1, . . . , αn be an integral basis for K. Let βi = αxi. Then

∆K/Q({ β1, . . . , βn }) = det(σi(αxi))
2

=

(
n∏
i=1

σi(α)

)2

∆K

= (NK/Q(α))2∆K

The proposition then follows by comparing to the result in Corollary 3.16.

Example 3.18. Let d be a square-free integer satisfying d ≡ 0 (mod 3) and d 6≡ ±1
(mod 9). Let K = Q(d1/3). We claim that OK = Z[d1/3]. Let θ = d1/3. The minimal
polynomial of θ over Q is f(X) = X3 − d. Since disc(f(x)) = −27d2 we have

−27d2 = [OK : Z[θ]]2∆K

where ∆K is the discriminant of the number field K1. So the only primes dividing the index
[OK : Z[θ]] are either 3 or a divisor of d. Let p be such a prime. Recall that the index
[OK : Z[θ]] represents the number of elements in the quotient group OK/Z[θ]. Hence if p is
the number of elements of OK/Z[θ] then there must exist an element y 6= 0 +Z[θ] such that
py = 0 + Z[θ]. This is equivalent to there existing non-zero x ∈ Z[θ] such that x/p ∈ OK
but x/p /∈ Z[θ].

Let

z =
x

p
=
A+Bθ + Cθ2

p

be such an element of OK for some A,B,C ∈ Z. If ω is a primitive cube root of unity then
the other conjugates of z = z1 are given by

z2 =
A+Bωθ + Cω2θ2

p

z3 =
A+Bω2θ + Cωθ2

p

We can then calculate the coefficients ei of the minimal polynomial of z in terms of symmetric
polynomials:

e0 =
A3 + dB3 + d2C3 − 3ABCd

p3

e1 =
3A2 − 3BCd

p2

e2 =
3A

p

1the discriminant of a cubic polynomial of the form X3 + aX + b is given by −4a3 − 27b2
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where we have used the fact that 1 + ω + ω2 = 0. Now since z ∈ OK , we must have that
e1, e2, e3 ∈ Z. First assume that p 6= 3. Then since e2 ∈ Z, we must have that p|A. We
can add integer multiples of 1, θ, θ2 to A,B,C without changing the fact that the ei ∈ Z.
Hence without loss of generality, we may assume that 0 ≤ A ≤ B ≤ Cp− 1. It then follows
that A = 0. Since e1 ∈ Z, we have that p2|BCd. But d is square free so we must have that
p|BC. If B = 0 then, since e0 ∈ Z we have p3|d2C3. This implies that p|C3 whence C = 0.
Conversely, if C = 0 then p3|dB3 whence B = 0. Hence in the case p 6= 3 we have that
z = 0 and thus x = 0. But this a contradiction.

Hence assume p = 3. We may assume, without loss of generality, that A,B,C = 0 or
±1. If A = 0 then 3|BCd. But d is not divisible by 3 so 3|BC so either B = 0 or C = 0.
Suppose that B = 0. Then 27|d2C3 whence 3|C and so C = 0. Similarly, if C = 0 then
B = 0. This is again a contradiction.

So, finally, assume that A = ±1. Without loss of generality, suppose that A = 1. Then
BCd ≡ 1 (mod 3) and 27|(1 +B3d+ C3d2 − 3BCd). So B,C 6= 0. We have four cases:

B = C = 1: In this case we have 27|(1 + d + d2 − 3d) and so (d − 1)2 ≡ 0 (mod 27). But
then d− 1 ≡ 0 (mod 9) which is a contradiction to the assumption that d 6≡ 1 (mod 9).

B = 1, C = −1: In this case we have 27|(1 + d− d2 + 3d) and so d2 − 4d− 1 ≡ 0 (mod 3).
But d ≡ 1, 2 (mod 3) which is a contradiction.

B = −1, C = 1: In this case we have 27|(1 − d + d2 + 3d) which is a contradiction to the
assumption d 6≡ 1 (mod 9).

B = −1, C = −1: In this case we have 27|(1− d− d2 − 3d) which is again a contradiction
modulo 3.

We see that in all cases, there does not exist a prime dividing [OK : Z[θ]] and so OK =
Z[θ] as required.

Lemma 3.19. Let K be a number field and I a non-zero fractional ideal of OK. Then
II ′ = OK.

Proof. First suppose that I is an integral ideal. If I = OK then, clearly, I ′ = OK and we
are done. Hence assume that I is a proper ideal of OK . Then we can write

I = p1 · · · pr

for some non-zero prime ideals pi / OK . By Proposition 3.9 we know that pip
′
i = OK . We

then have that

x ∈ I ′ ⇐⇒ x ∈ xI ⊆ OK ⇐⇒ (x)p1 · · · pr ⊆ OK
⇐⇒ (x)p2 · · · pr ⊆ p′1
...

⇐⇒ (x) ⊆ p′1 · · · p′r
⇐⇒ x ∈ p′1 · · · p′r

It then follows that II ′ = OK and we are done for the case where I is a non-zero integral
ideal.

Now suppose that I is a non-zero fractional ideal. Then we may write I = (1/d)J for some
non-zero integral ideal J . From the previous case, we know that J has an inverse, say J−1.
It then follows that I−1 = dJ−1 is an inverse for I. Indeed, II−1 = (1/d)JdJ−1 = OK .

Henceforth, given any fractional ideal I, we shall write I ′ as I−1.
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Corollary 3.20. Let K be a number field. Denote by JK the set of all non-zero fractional
ideals of OK. Then JK is an abelian group under multiplication of ideals.

Definition 3.21. Let K be a number field and let PK be the (normal) subgroup of IK
containing all principal fractional ideals of OK . Then we define the group Cl(OK) = IK/PK
to be the ideal class group of K. We call the cardinality of IK/PK the class number of
K and we denote it by hK .

We will soon prove that the class group is finite.

Proposition 3.22. Let R be a Dedekind domain. Then R is a unique factorisation domain
if and only if it is a principal ideal domain.

Proof. We know from elementary ring theory that any PID is necessarily a UFD.
Conversely, assume that R is a UFD. We first claim that all prime ideals of R are

principal. To this end, let p / R be a prime ideal. If p is the zero ideal then it is clearly
principal so we may assume that p is non-zero. Let x ∈ p be non-zero. Since R is a UFD,
we can write x as a product of primes x = p1 · · · pr for some pi ∈ R. Now p is prime which
implies that at least one of the pi ∈ p. Let p = pi. Since R is Dedekind, the ideal (p) / R is
maximal which means we must have p = (p). This proves the claim.

Now let I / R be an arbitrary ideal of R. Given x ∈ I, let l(x) denote the number of
primes in the prime decomposition of x. Choose x ∈ I such that l(x) is minimal. We claim
that x is a generator of I. Indeed, suppose that y ∈ I such that x does not divide y. Let z
be the greatest common divisor of x and y. Clearly, l(z) < l(x). We may write x = za and
y = zb for some coprime a, b. We now claim that (a, b) = R. Indeed, consider the collection

{ J / R | J ⊆ (a, b) }

Since R is Noetherian, this collection of ideals contains a maximal element, say m. Since any
maximal ideal is a prime ideal, there must exist a prime p ∈ R such that m = (p) ⊆ (a, b).
But then p divides both a and b which contradicts the fact that they are coprime. Hence
R = (a, b). Thus 1 ∈ (a, b) and there exist elements x0, y0 ∈ R such that x0a + y0b = 1.
This implies that z = x0x+ y0y, contradicting the fact that l(z) < l(x). We must therefore
have that x divides all y ∈ I and we are done.

Proposition 3.23. Let K be a number field. Then OK is a principal ideal domain if and
only if Cl(OK) = { 0 }.

Proof. Suppose that OK is a principal ideal domain and let I be a fractional ideal of OK .
Then we can write I = (1/d)J for some d ∈ OK and integral ideal J / OK . Since OK is a
PID we have that J = (a) for some a ∈ OK . Then J = (a/d) and is thus principal.

Conversely, suppose that Cl(OK) = { 0 }. Then every fractional ideal of OK is principal.
In particular, every integral ideal of OK is principal and we are done.

It follows that, given a number field K, OK is a unique factorisation domain if and only
if it is a principal ideal domain. This is in turn equivalent to the ideal class group being
trivial. We thus see that the class group is a measure of the failure of a ring of integers to
be a unique factorisation domain.

Theorem 3.24 (Dedekind’s Theorem). Let K be a number field and suppose that K = Q(α)
for some α ∈ OK. Suppose furthermore that there exists a prime p that does not divide
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[OK : Z[α]]. Let f(X) be the minimal polynomial of α over Q and let f(X) ∈ Fp[X] be its
reduction modulo p. Suppose that

f = ge11 · · · gerr

is the factorisation of f into irreducibles in Fp[X]. For each 1 ≤ i ≤ r, let hi be such that

1. hi ≡ gi (mod p)

2. pi = (p, hi(α))OK

Then

1. p1, . . . , pr are the distinct prime ideals of OK that contain p

2. pOK = pe11 · · · perr is the prime ideal factorisation in OK

3. [OK/pi : Fp] = deg(gi)

Example 3.25. Consider K = Q(
√
−5). Since −5 ≡ 3 (mod 4) we have OK = Z[

√
−5].

Then neither 2 nor 3 divide [OK : Z[
√
−5] so we can apply Dedekind’s Theorem to investigate

how 2OK and 3OK factorise. X2 + 5 is the minimal polynomial of
√
−5 over Q. We first

consider p = 2. We have

X2 + 5 ≡ X2 + 1 (mod 2)

= (X + 1)2

Writing p = (2, 1 +
√
−5)OK it follows that 2OK = p2. Now for p = 3 we have

X2 + 5 ≡ X2 + 2 (mod 3) = (X + 1)(X − 1)

Writing q = (3, 1 +
√
−5)OK and q = (3, 1−

√
−5)OK we have that 3OK = qq.

Now, by Dedekind’s Theorem, we have that N(p) = 2 and N(q) = N(q). Indeed, in the
p = 2 case for example, we have [OK/p : F2] = deg(X+1) = 1. It then follows that p, q, q are
all distinct prime ideals. We have the following calculation for the norm of (1 +

√
−5)OK :

N((1 +
√
−5)) = |NQ(

√
−5)/Q(1 +

√
5)| = 6

Furthermore, N(pq) = N(p)N(q). Observe that

1 +
√
−5 = 3(1 +

√
−5)− 2(1 +

√
−5) ∈ pq

It then follows that (1+
√
−5)OK ⊆ pq. But these two ideals have the same norm so we must

have that (1+
√
−5)OK = pq. By a similar argumentation, we have that (1−

√
−5)OK = pq.

We therefore have that the non-unique factorisation of elements of OK

2 · 3 = 6 = (1 +
√
−5)(1−

√
−5)

becomes a unique factorisation of ideals of OK

p2qq = 6OK = (pq)(pq)
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4 Valuation Rings and Localisation

Definition 4.1. Let R be an integral domain and K = Frac(R). A valuation of R (or K)
is a map

v : K\ { 0 } → Z

such that, for all a, b ∈ K,

1. v(ab) = v(a) + v(b)

2. v(a+ b) ≥ v(a) + v(b) with equality if and only if v(a) 6= v(b)

Example 4.2. Let R = Z and fix a prime p in R. If a/b ∈ Q is non-zero we can always
write a/b = pαc/d for some c, d coprime to p. We define the p-adic valuation to be

vp(a/b) = α

It is readily verified that this is a valuation of Z.

Proposition 4.3. Let K be a field and v a non-trivial valuation of K. Then

1. The set given by

Ov = {x ∈ K\ { 0 } | v(x) ≥ 0 } ∪ { 0 }

is a ring called the valuation ring of K.

2. Frac(OK) = K.

3. Ov is a local ring2 with maximal ideal

mv = {x ∈ K\ { 0 } | v(x) > 0 } ∪ { 0 }

4. mv is a principal ideal whose generator is any element whose valuation is minimal -
such a generator is called a uniformiser for Ov.

5. Every non-zero ideal I / Ov is a power of m. In particular, Ov is a principal ideal
domain.

6. Ov is a Euclidean domain with Euclidean function v.

Proof.

Part 1: We first show that Ov contains the identities. It clearly contains 0 by definition.
We have v(1) = v(1 · 1) = v(1) + v(1) = 2v(1) so necessarily v(1) = 0 and thus 1 ∈ Ov.
Furthermore, v(−1) + v(−1) = v(−1 · −1) = v(1) = 0 so also v(−1) = 0 and so −1 ∈ Ov -
this guarantees the existence of additive inverses.

2recall that a local ring is one that has a unique maximal ideal (sometimes the Noetherian property is
also required but we shall be explicit when this is the case)

19



Now suppose a, b ∈ Ov. Then v(ab) = v(a) + v(b) ≥ 0 so ab ∈ Ov. Finally, v(a − b) ≥
v(a) + v(−b) = v(a) + v(−1) + v(b) ≥ 0 so a− b ∈ Ov. Hence Ov is a ring.

Part 2: It suffices to prove that for any x ∈ K then either x ∈ OK or x−1 ∈ OK . But this is
clear since either v(x) ≥ 0 or v(x) < 0. Indeed, in the latter case we have v(1) = v(xx−1) =
v(x) + v(x−1) and so v(x−1) = −v(x) whence v(x−1) ≥ 0.

Part 3: It is clear that mv is an ideal of Ov. To show that it is the unique maximal ideal,
it suffices to show that any element in Ov\mv is a unit. Let x be such an element. Then
v(x) = 0. We have v(x−1) = −v(x) and thus v(x−1) = 0 whence x−1 ∈ Ov\mv as required.

Part 4: Let x ∈ mv be of minimal valuation. We claim that mv = (x). Indeed, let y ∈ mv.
We need to show that y = rx for some r ∈ Ov. This is equivalent to showing that yx−1 = r
for some r ∈ Ov. We have that

v(yx−1) = v(y) + v(x−1) = v(y)− v(x)

Now, by assumption, v(y) ≥ v(x) and so v(y) − v(x) ≥ 0 which means that yx−1 ∈ Ov as
required.

Part 5: Let π be a uniformiser for Ov. Since v is a group homomorphism between K× and
Z, it follows that im(v) = v(π)Z. Hence v(π) divides v(r) for all r ∈ Oz. Let r ∈ mv be non-
zero. Then v(r) = v(π)k for some positive k ∈ Z. It follows that v(π−kr) = kv(π)+v(r) = 0.
Hence π−kr is a unit of OK and thus r = πku for some unit u ∈ Ov.

Now let I /Ov be a non-zero ideal. By a similar argument for mv, there exists an r0 ∈ I
such that I = (r0). But we can always write r0 = πku for some integer k and unit u ∈ OK .
Hence I = (r0) = (πku) = (πk) = (π)k = mk

v . It then follows that Ov is a principal ideal
domain.

Part 6: We claim that N : Ov → Z≥0 given by N(0) = 0 and N(r) = v(r) for non-zero
r ∈ Ov is a Euclidean function for Ov.

We need to show that for all non-zero a, b ∈ Ov, there exists q, r ∈ Ov such that a = bq+r
and either r = 0 or N(r) < N(b).

Suppose first that v(a) ≥ v(b). Then v(a/b) = v(a) − v(b) ≥ 0 so q = a/b ∈ Ov and
r = 0. Now suppose that v(a) < v(b). In this case, we can just let q = 0 and r = a.

Example 4.4. Consider the p-adic valuation vp on Q as defined before. Then

Ovp =
{
pn
a

b

∣∣∣ n ≥ 0, a, b ∈ Z and a, b coprime to p
}

Example 4.5. Let K be a nunber field and fix a prime ideal p / OK . Let f ∈ K×. Then
we can write

(f) = P e1
1 · · ·P er

r

for some prime ideals Pi /OK and integers ei. We can define the p-adic valuation of f to be
the power of p in the prime ideal factorisation of (f).

Definition 4.6. Let R be a ring and S ⊆ R a subset. We say that S is multiplicative if
1 ∈ S and s, t ∈ S implies that st ∈ S.

Example 4.7. If R is an integral domain then R\ { 0 } is a multiplicative subset of R.
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Example 4.8. If R is an integral domain and P / R is a prime ideal then S = R\P is a
multiplicative subset of R.

Definition 4.9. Let R be a ring and S ⊆ R a multiplicative subset. Define an equivalence
relation on S ×R where (s, r) ∼ (s′, a′) if and only if there exists s′′ ∈ S such that s′′(as′ −
a′s) = 0. We define the localisation (or ring of fractions)of R with respect to S, denoted
S−1R to be the set of all equivalence classes of this relation. We denote the equivalence
class of (s, a) by a/s. This set forms a ring with addition given by

a

s
+
a′

s′
=
as′ + a′s

ss

and multiplication given by

a

s
· a
′

s′
=
aa′

ss′

1/1 is the multiplicative identity and 0/1 is the additive identity.

Example 4.10. Let R be an integral domain and S = { 0 } the multiplcative subset of R
consisting of only zero. Then S−1R = Frac(R)

Example 4.11. Let R be an integral domain and r ∈ R. Consider the set S = { 1, r, r2, . . . }.
Then S is a multiplicative subset of R and S−1R is called the localisation of R at the element
r.

Example 4.12. Let R be an integral domain and p / R a prime ideal. Then S = R\p
is multiplicative and S−1R is called the localisation of R at the prime ideal p. This is
sometimes denoted Rp.

Here we give a survey of some interesting results pertaining to DVRs and localisation.

Proposition 4.13. Let R be a ring and S ⊆ R a multiplicative subset. If I / R is an ideal
then S−1I = { a/s | a ∈ I, s ∈ S } is an ideal of S−1R.

Proposition 4.14. Let R be a ring and S ⊆ R a multiplicative subset. Then there is a
one-to-one correspondence between the prime ideals Q / R that are disjoint from S and the
prime ideals of S−1R given by Q 7→ S−1Q.

Example 4.15. Let R be an integral domain and p a prime ideal. Let Rp be the corre-
sponding localisation. Then there is a one-to-one correspondence between the prime ideals
Q such that Q ⊆ p and the prime ideals of Rp.

Theorem 4.16. Let R be an integrally closed Noetherian local integral domain that is not
a field. Let m / R be its unique maximal ideal. Then R is a discrete valuation ring.

Corollary 4.17. Let R be a Noetherian integral domain in which every non-zero prime ideal
is maximal. Then R is a Dedekind domain if and only if every localisation of R is a discrete
valuation ring.

Lemma 4.18. Let R be a Noetherian integral domain. Then R is integrally closed if and
only if every localisation of R is integrally closed.

Proposition 4.19. let R be a Dedekind domain and I / R a non-zero ideal. Let I =
P e1

1 · · ·P er
r be its unique factorisation into prime ideals. Then

R/I ∼= (R/P e1
1 )⊕ · · · ⊕ (R/P er

r )

Furthermore, R/P i ∼= RP/(PRp)
i is a discrete valuation ring.
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5 Geometry of Numbers

Definition 5.1. Let V be an n-dimensional vector space over R. We say that a subset
X ⊆ V is compact if it is both closed and bounded.

Definition 5.2. Let V be an n-dimensional vector space over R. Let Λ ⊆ V be a subgroup.
We say that V is discrete if for every compact subset X ⊆ V we have |X ∩ Λ| <∞.

Theorem 5.3. Let V be an n-dimensional vector space over R. Let Λ ⊆ V be a subgroup.
Then the following are equivalent:

1. Λ is discrete

2. Λ is a finitely generated Z-module and some generating set is linearly independent over
R.

3. Λ is a finitely generated Z-module and every Z-basis of Λ is linearly independent over
R.

Proof. We shall prove the theorem in the order (1) =⇒ (2) =⇒ (3) =⇒ (1).

(1) =⇒ (2): Assume that Λ is discrete. Let e1, . . . , er ∈ Λ be linearly independent over R
with r maximal. Since V is n-dimensional, we have r ≤ n. Let

P =

{
r∑
i=1

aiei

∣∣∣∣∣ ai ∈ [0, 1]

}

be the parallelotope generated by the ei. Cleary, P is closed and bounded and is thus
compact. Since Λ is discrete, P ∩ Λ is finite.

Fix some x ∈ Λ. Since r is maximal, there exist some bi ∈ R such that x =
∑r

i=1 biei.
Given any real number c ∈ R, we can always write c = [c] + {c} where [c] is its integral part
and {c} is its fractional part. It follows that for all i we have bi = [bi] +ai where ai = {bi} ∈
[0, 1). Write λ =

∑r
i=1[bi]ei and p =

∑r
i=1 aiei so that x = λ + p. Since Λ is a group, we

have that λ ∈ Λ. Furthermore, it is clear that p ∈ P . Now, p = x−λ ∈ Λ and so p ∈ P ∩Λ.
It thus follows that Λ is finitely generated as a Z-module by { e1, . . . , er }∪ (P ∩Λ) = P ∩λ.

Now let m = |P ∩Λ|. Let j ∈ Z and define xj = jx−
∑r

i=1[jbi]ei. Clearly, xj ∈ Λ. Also,
xj =

∑r
i=1(jbi − [jbi])ei and so xj ∈ P . It thus follows that xj ∈ Λ ∩ P . By the pigeonhole

principle, we must have that xj = xk for some j 6= k and both j, k between 1 and m + 1.
This means that jbi and kbi have the same fractional part. Hence

(j − k)bi = [jbi]− [kbi] ∈ Z

Hence bi = Bi/m! for some Bi ∈ Z. Indeed, 1 ≤ j − k ≤ m so j − k must divide m!. We
may thus write

x =
r∑
i=1

biei =
r∑
i=1

Bi

m!
ei

whence Λ is a finitely generated Z-submodule of the Z-module, say M , generated by the
ei/m!.

By the structure theorem for finitely generated modules over a Euclidean domain, there
exist a Z-basis { g1, . . . , gr } for M and integers n1, . . . , nr such that n1g1, . . . , nrgr is a Z-
basis for Λ (after possibly removing the nigi that are zero). Now, the change of basis matrix
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between the ei/m! and the gi is invertible and, since the ei are linearly independent over
R, we must have that the gi are linearly independent over R whence the nigi are linearly
independent over R.

(2) =⇒ (3): Assume that Λ is a finitely generated Z-module and that some generating set
is linearly independent over R. Let g1, . . . , gr be such a linearly independent generating set.
Trivially, the gi are linearly independent over Z and so form a Z-basis for Λ.

Let h1, . . . , hs be another Z-basis for Λ. Clearly we must have that r = s. We can then
write

gi =
r∑
j=1

mijhj

for some mij ∈ Z. This then implies that the hi must be linearly independent over R.

(3) =⇒ (1): Suppose that Λ is a finitely generated Z-module and every Z-basis of Λ is
linearly independent over R. Let e1, . . . , er be a Z-basis for Λ. By assumption, the ei are
linearly independent over R so we may extend the ei to a R basis of V , say e1, . . . , en. Let
f1, . . . , fn denote the standard basis of V . Then there is a linear map

L : V → V

ei 7→ fi

This is clearly continuous with continuous inverse and is thus a homeomorphism of ths
standard topology on V . L thus preserves compactness. If X ⊆ V is compact then L(X) ⊆
V is compact aand there must exist a ball B ⊆ V centered at 0 which contains L(X) and is
closed and bounded. Let such a ball have radius R. It is easy to see that L(Λ)∩B is finite.
Indeed, L(Λ) is the Z-span of f1, . . . , fr and thus

L(Λ) ∩B =

{
r∑
i=1

mifi

∣∣∣∣∣ mi ∈ Z,
r∑
i=1

m2
i ≤ R2

}
But there are only finitely many such integer vectors so L(Λ) ∩B must be finite. Applying
the inverse of L we see that Λ∩L−1(B) is finite. Now, X ⊆ L−1(B) so Λ∩X is finite. Since
X was an arbitrary compact subset of V , Λ must be discrete.

Definition 5.4. Let V be an n-dimensional vector space over R and Λ ⊆ V a subgroup.
We say that Λ is a lattice if it is discrete and has rank n.

Definition 5.5. Let V be an n-dimensional vector space over R and Λ ⊆ V a lattice. If
e1, . . . , en is a Z-basis for Λ, we define the e-parallelotope3 of Λ to be the set

E =

{
n∑
i=1

aiei

∣∣∣∣∣ ai ∈ [0, 1]

}
Its volume, denoted vol(E) is given by the absolute value of the determinant of the matrix
whose columns are the ei.

Lemma 5.6. Let V be an n-dimensional vector space over R and Λ ⊆ V a lattice. Let
e1, . . . , en and f1, . . . , fn be two Z-bases for Λ. Then the volume of the e-parallelotope is
equal to the volume of the f -parallelotope.

3note: this is not conventional notation!
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Proof. Dnote by E and F the e-parallelotope and f -parallelotope respectively. We may
write fj =

∑n
k=1 njkek for some integers njk. Let N = (njk) be the matrix whose entries are

the njk. It follows that

vol(F ) = | det(N)| vol(E)

Clearly, N−1 has Z entries so det(N) is a unit in Z (i.e ±1). Hence vol(F ) = vol(E).

Definition 5.7. Let V be an n-dimensional vector space over R and Λ ⊆ V a lattice. We
define the covolume of Λ, denoted covol(Λ), to be the volume of the parallelotope given by
any Z-basis of Λ.

Definition 5.8. Let V be a finite dimensional vector space over R and S ⊆ V a subset. We
say that S is convex if for all x, y ∈ S we have tx+ (1− t)y ∈ S for all t ∈ [0, 1]4.

Theorem 5.9 (Minkowski’s Convex Body Theorem). Let V be an n-dimensional vector
space over R, Λ ⊆ V a lattice and S ⊆ V a measurable5 subset. Then

1. If vol(S) > covol(Λ) then there exists x, y ∈ S such that 0 6= x− y ∈ Λ.

2. If vol(S) > 2n covol(Λ) and S is symmetric6 and convex then there exists a non-zero
point in S ∩ Λ.

3. If vol(S) ≥ 2n covol(Λ) and S is symmetric, convex and compact then there exists a
non-zero point in S ∩ Λ.

Proof.

Part 1: Fix a Z-basis of Λ and let P be the parallelotope defined by it. We can think of Λ
as acting on V by translation. Then P is a fundamental domain for this action. In other
words, V =

⋃
λ∈Λ Pλ where Pλ = λ + P 7. Observe that Pλ ∩ Pµ is non-zero at most along

some subset of the boundaries of Pλ and Pµ. Furthemore, set Sλ = λ + S. We then have
that

S =
⋃
λ∈Λ

(Pλ ∩ S) =⇒ vol(S) =
∑
λ∈Λ

vol(Pλ ∩ S)

Through a translation, we have that Pλ ∩S ∼= P ∩S−λ and so vol(S) =
∑

λ∈Λ vol(P ∩S−λ).
Now assume that all the subsets P ∩ S−λ are disjoint. Then they are disjoint subsets of
P whence

∑
λ∈Λ vol(P ∩ S−λ) ≤ vol(P ). But, by assumption, vol(S) > vol(P ) which is a

contradiction. Hence there exists λ, µ ∈ Λ with λ 6= µ such that

∅ 6= (P ∩ S−λ) ∩ (P ∩ S−µ)

= P ∩ (S−λ ∩ S−µ)

In particular, S−λ ∩ S−µ 6= ∅ so there exists x, y ∈ S such that x − λ = y − µ. Then
x− y = λ− µ ∈ Λ and x 6= y.

Part 2: Let S ′ = (1/2)S. Then vol(S ′) = 2−n vol(S) > covol(Λ). Hence by Part 1, there
exists, y, z ∈ S ′ such that 0 6= y − z ∈ Λ. Then 2x, 2z ∈ S so −2z ∈ S by symmetry. Let
x = y − z. Then

x = y − z =
1

2
(2y − 2z) =

1

2
(2y) +

1

2
(−2z)

4geometrically, this means that, given any two points in S, the line joining them is fully contained in S
5interpret this is any subset of V that has an intuitive volume
6x ∈ S =⇒ −x ∈ S
7consider Λ = Z2 ⊆ R2 with the ei the standard basis
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Since S is convex, it follows that x ∈ S.

Part 3: Let Sm = (1 + 1/m)S for all positive integers m. By Part 2, there exists an
xm ∈ Λ∪Sm. Note that the sequence {xm } ⊆ Λ∩S1. But Λ is a lattice and, in particular,
is discrete. S1 is clearly compact so Λ ∩ S1 is finite. Hence xm = x for infinitely many m.
Then x ∈ ∩mSm. But each Sm is compact whence x ∈ ∩mSm = S and we are done.

We shall use these results to show that the class group of a number field is finite. Let K
be a number field of degree n. Recall that there exist n distinct embeddings of K into an
algebraic closure of C. It is not hard to see that n = r + 2s where r is the number of real
embeddings and 2s is the number of complex embeddings.

Definition 5.10. Let K be a number field of degree n and let σ1, . . . , σn be the distinct em-
beddings ofK into an algebraic closure of Q. We can label them so that σ1, . . . , σr, . . . , σs, . . . , σ2s

is the list of embeddings where r is the number of real embeddings and s is the number
of complex conjugate pairs of embeddings. Furthermore, choose the ordering of these em-
beddings such that, for r ≤ j ≤ rs, σj+s is the complex conjugate of σj. Note that we can
identify C with R2 via the mapping z 7→ (Re z, Im z). We define the canonical embedding
of K to be the mapping K → Rn given by

(σ1, . . . , σr,Reσr+1, Imσr+1, . . . ,Reσr+s, Imσr+s)

Lemma 5.11. Let V be an n-dimensional vector space over R and Λ ⊆ V a lattice. Suppose
that M ⊆ Λ is a subgroup of index m. Then M is a lattice and covol(M) = m covol(Λ).

Proof. By the stucture theorem for finitely generated modules over a Euclidean domain,
there exists a Z-basis e1, . . . , en for Λ and integers r1, . . . , rn such that r1e1, . . . , rnen is a
Z-basis for M . Let X ⊆ V be compact. Then M ∩X ⊆ Λ ∩X. But the latter is finite so
M must be discrete and is thus a lattice.

Let [e1, . . . , en] denote the matrix with columns given by the ei. Then

covol(M) = | det[r1e1, . . . , rnen]| = |r1 · · · rn| det[e1, . . . , en] =
n∏
i=1

ri covol(Λ)

It is easy to see that m =
∏n

i=1 ri. Indeed, m is the order of the quotient group Λ/M . But
this is isomorphic to Z/(r1)⊕ · · · ⊕ Z/(rn) which has r1 · · · rn elements.

Proposition 5.12. Let K be a number of degree n and discriminant ∆K. Let σ1, . . . , σn be
the n distinct emebddings of K into an algebraic closure of Q such that n = r+ 2s and let σ
denote the canonical embedding of K into Rn. Furthermore, let I /OK be an integral ideal.
Then

1. σ(OK) is a lattice in Rn and covol(σ(OK)) = 2−s|∆K |1/2.

2. σ(I) is a lattice in Rn and covol(σ(I)) = N(I)2−s|∆K |1/2.

Proof. Part 1: Let x1, . . . , xn be a Z-basis of OK . Then covol(σ(OK)) is given by the
absolute value of∣∣∣∣∣∣∣∣∣

σ1(x1) · · · σr(x1) Reσr+1(x1) Imσr+1(x1) · · · Reσr+2s(x1) Im σr+2s(x1)
σ1(x2) · · · σr(x2) Reσr+1(x2) Imσr+1(x2) · · · Reσr+2s(x2) Im σr+2s(x2)

... · · · ...
...

... · · · ...
...

σ1(xn) · · · σr(xn) Re σr+1(xn) Im σr+1(xn) · · · Reσr+s(xn) Imσr+s(xn)

∣∣∣∣∣∣∣∣∣
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Omitting writing everything except the σr+1 columns, we have

± covol(σ(OK)) =

∣∣∣∣∣∣∣
· · · 1

2
(σr+1(x1) + σr+s+1(x1)) 1

2i
(σr+1(x1)− σr+s+1(x1)) · · ·

· · · ...
... · · ·

· · · 1
2
(σr+1(xn) + σr+s+1(xn)) 1

2i
(σr+1(xn)− σr+s+1(xn)) · · ·

∣∣∣∣∣∣∣
=

(
1

2

)s(
1

2i

)s ∣∣∣∣∣∣∣
· · · σr+1(x1) + σr+s+1(x1) σr+1(x1)− σr+s+1(x1) · · ·
· · · ...

... · · ·
· · · σr+1(xn) + σr+s+1(xn) σr+1(xn)− σr+s+1(xn) · · ·

∣∣∣∣∣∣∣
Adding the column with the differences to the column with the sums gives

± covol(σ(OK)) =

(
1

2

)s(
1

2i

)s ∣∣∣∣∣∣∣
· · · 2σr+1(x1) σr+1(x1)− σr+s+1(x1) · · ·
· · · ...

... · · ·
· · · 2σr+1(xn) σr+1(xn)− σr+s+1(xn) · · ·

∣∣∣∣∣∣∣
=

(
1

2i

)s ∣∣∣∣∣∣∣
· · · σr+1(x1) σr+1(x1)− σr+s+1(x1) · · ·
· · · ...

... · · ·
· · · σr+1(xn) σr+1(xn)− σr+s+1(xn) · · ·

∣∣∣∣∣∣∣
Subtracting the column whose entries have a single term from the column with the differences
gives

± covol(σ(OK)) =

(
1

2i

)s ∣∣∣∣∣∣∣
· · · σr+1(x1) −σr+s+1(x1) · · ·
· · · ...

... · · ·
· · · σr+1(xn) −σr+s+1(xn) · · ·

∣∣∣∣∣∣∣
= (−1)s

(
1

2i

)s ∣∣∣∣∣∣∣
· · · σr+1(x1) σr+s+1(x1) · · ·
· · · ...

... · · ·
· · · σr+1(xn) σr+s+1(xn) · · ·

∣∣∣∣∣∣∣
But recall from Proposition 2.15 that such a determinant is the square root of |∆K |. Thus

covol(σ(OK)) =

∣∣∣∣(−1)s
(

1

2i

)s
|∆K |1/2

∣∣∣∣ = 2−s|∆K |1/2

Part 2: Recall that an integral ideal I /OK has index N(I) in OK . Hence by Lemma 5.11,
σ(I) is a lattice. Furthermore,

covol(σ(I)) = N(I) covol(σ(OK)) = N(I)2−s|∆K |1/2

Definition 5.13. Let K be a number field of degree n such that n = r + 2s where r is
the number of real embeddings and s is the number of complex conjugate pairs of complex
embeddings of K into an algebraic closure of Q. We define the Minkowski constant cK
of K to be

cK =

(
4

π

)s
n!

nn
|∆K |1/2

where ∆K is the discriminant of K.
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Lemma 5.14. Let t > 0 ∈ R and consider the set

B(r, s)t =

{
(y, z) ∈ Rr × Cs

∣∣∣∣∣ ∑
i

|yi|+ 2
∑
i

|zi| ≤ t

}
Then

vol(B(r, s)t) = 2r
(π

2

)s tn
n!

Proof. We shall prove the lemma by induction on r and s. First suppose that r = 1 and
s = 0. Then B(1, 0)t = [−t, t]. The lemma clearly holds in this case. Next suppose that
r = 0 and s = 1. Then B(0, 1)t is the disc of radius t/2 in the complex plane and the lemma
also holds in this case.

Now assume that the formula holds for B(r, s)t. We shall prove that it holds for B(r +
1, s)t.

B(r + 1, s)t is the region of R× Rr × Cs defined by

|y|+
∑
i

|yi|+ 2
∑
i

|zi| ≤ t

for some y ∈ R. This is equivalent to∑
i

|yi|+ 2
∑
i

|zi| ≤ t− |y|

For |y| > t, Bt is empty so we have

vol(B(r + 1, s)t) =

∫ t

−t
B(r, s)t−|y| dy

= 2

∫ t

0

2r
(π

2

)s (t− y)n

n!
dy

= 2r+1
(π

2

)s 1

n!

∫ t

0

(t− y)n dy

= 2r+1
(π

2

)s 1

n!

∫ t

0

[
1

n+ 1
(t− y)n

]t
0

= 2r+1
(π

2

)s tn

(n+ 1)!

as desired.
We now prove that that the formula holds for B(r, s+1)t. This is the region of Rr×Cs×C

defined by ∑
i

|yi|+ 2
∑
i

zi + 2|z| ≤ t

for some z ∈ C. This is equivalent to∑
i

|yi|+ 2
∑
i

zi ≤ t− 2|z|

and hence B(r, s+ 1)t is empty when |z| ≥ t/2. We thus have

vol(B(r, s+ 1)t) =

∫
|z|≤t/2

B(r, s)t−2|z| dσ
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where dσ is the infinitesimal area element of C. Swapping to polar coordinates, we have
z = ρ exp(iθ) and dσ = dρdθ. Hence

vol(B(r, s+ 1)t) =

∫ t/2

ρ=0

∫ 2π

θ=0

ρ2r
(π

2

)s (t− 2ρ)n

n!
dρdθ

= 2r
(π

2

)s 2π

n!

∫ t/2

ρ=0

ρ(t− 2ρ)n dρ

Applying integration by parts yields∫ t/2

ρ=0

ρ(t− 2ρ)n dρ =
tn+2

4(n+ 1)(n+ 2)

and we are done.

Proposition 5.15 (Minkowski bound). Let K be a number field of degree n such that
n = r + 2s where r is the number of real embeddings and s is the number of complex
conjugate pairs of complex embeddings of K into an algebraic closure of Q. If I /OK is an
integral ideal then there exists non-zero x ∈ I such that

|NK/Q(x)| ≤ cKN(I)

where cK is the Minkowski constant of K.

Proof. Let t > 0 ∈ R and let

B(r, s)t =

{
(y, z) ∈ Rr × Cs

∣∣∣∣∣ ∑
i

|yi|+ 2
∑
i

|zi| ≤ t

}

Clearly, B(r, s)t is compact and symmetric. We first claim that it is also convex. To this
end, let (a, b), (c, d) ∈ B(r, s)t. We need to show that m1(a, b) + m2(c, d) ∈ B(r, s)t for all
m1 ≥ 0, m2 ≤ 1 such that m1 +m2 = 1. We have

m1(a, b) +m2(c, d) = (m1a+m2c,m1b+m2d)

and so∑
i

|m1ai +m2ci|+ 2
∑
i

|m1bi +m2di| =
∑
i

|m1ai +m2ci|+ 2
∑
i

|m1bi +m2di|

≤
∑
i

m1|ai|+m2|ci|+ 2
∑
i

m1|bi|+m2|di|

= m1

(∑
i

|ai|+ 2
∑
i

|bi

)
+m2

(∑
i

|ci|+ 2
∑
i

|di|

)
≤ m1t+m2t = t

and so B(r, s)t is convex.
Now choose t such that vol(B(r, s)t) = 2n covol(σ(I)). Then

2r
(π

2

)s tn
n!

= 2nN(I)2−s|∆K |1/2

28



Rearranging and using the fact that n = r + 2s we have

tn =

(
4

π

)s
n!|∆K |1/2N(I)

Now by Minkowski’s Convex Body Theorem, there exists non-zero x ∈ I such that σ(x) =
(y1, . . . , yr, z1, zs) ∈ B(r, s)t. Note that

NK/Q(x) =
r∏
i=1

yi

s∏
j=1

zjzj

By the arithmetic mean-geometric mean inequality we have

|NK/Q(x)|1/n ≤ 1

n

(∑
i

|yi|+ 2
∑
j

|zj|

)

By the choice of t we then have that

|NK/Q(x)| ≤ tn

nn
= cKN(I)

as desired.

Corollary 5.16. Let K be a number field of degree n = r + 2s. Then every element of
Cl(OK) has an integral ideal representative J /OK such that N(J) ≤ cK.

Proof. Given any equivalence class in Cl(OK), choose a fractional ideal, say M . Given any
non-zero y ∈ M we have yOK ⊆ M and so yM−1 ⊆ OK . Observe that [yM−1] = [M−1] as
multiplying by an element of K won’t affect the principality of the fractional ideal M−1. We
thus may assume, without loss of generality, that M−1 is an integral ideal. By Proposition
5.15, we may choose a non-zero x ∈M−1 such that

|NK/Q(x)| ≤ cKN(M−1)

Multiplying through by N(M) we get

|N(xM)| ≤ cK

Clearly, xM is in the same equivalence class as M and xM ⊆ M−1M ⊆ OK and is thus
integral as required.

Lemma 5.17. Let R be a Dedekind domain and I1, I2 / R integral ideals. Then I1 divides
I2 if and only if I2 ⊆ I1.

Proof. Let p /OK be prime. Let nP (I) denote the exponent of p in the prime factorisation
of p. Then I1 divides I2 if and only if np(I1) ≤ np(I2) for all prime ideals p. Now we have
I2 ⊆ I1 if and only if I2I

−1
1 ⊆ OK . But this is equivalent to np(I2)− np(I1) ≥ 0 and we are

done.

Corollary 5.18. Let K be a number field. Then Cl(OK) is finite.
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Proof. By the existence of the Minkowski bound, it suffices to show that, given any positive
integer M , there exist only finitely many integral ideals whose norm is M .

We first claim that any integral ideal with norm M necessarily contains M . To this
end, let I / OK be an integral ideal such that N(I) = M . Then, by definition, we have
|OK/I| = M . But it is easy to see that the characteristic of a finite ring must divide its
order. Hence we must have that M ≡ 0 (mod I) and thus M ∈ I.

Now, if M ∈ I then (M) ⊆ I. By Lemma 5.17, I divides (M). But, by unique
factorisation, (M) has only finitely many divisors. It thus follows that there can exist only
finitely many ideals containing M and thus there can only exist finitely many ideals with
norm M .

Remark. This result doesn’t necessarily hold for general Dedekind domains. Indeed, a
counter example is the complex algebraic curves of positive genus.

Example 5.19. Consider the number field K = Q(
√
−13). −13 ≡ 3 (mod 4) and so

OK = Z[
√
−13]. It follows that ∆K = −4 · 13. Now, the degree of K over Q is n = 2 and

there are clearly only complex embeddings so s = 1. We may thus calculate a bound on the
Minkowski constant:

ck =

(
4

π

)
2!

22
(2
√

13) =
4
√

13

π
<

4
√

13

3
=

2
√

52

3
<

2 · 7.5
3

= 5

Hence every equivalence class in OK contains an integral ideal representative I satisfying
N(I) ≤ 4. Since every integral ideal admits a unique factorisation into prime ideals, this
means that the class group is generated by classes of prime ideals [p] such that N(p) ≤ 4.

We now factorise the ideals generated by the rational primes less than or equal to 4 (i.e
2 and 3) using Dedekind’s Theorem. First note that [OK : Z[

√
−13] = 1 and so we may

apply Dedekind’s Theorem to 2 and 3. The minimal polynomial of
√
−13 over Q is X2 +13.

Considering this modulo 2 we have

X2 + 13 ≡ X2 + 1 (mod 2)

= (X + 1)2

and so pOK = p2 where p = (2, 1 +
√
−13)OK and N(p) = 2.

Considering the minimal polynomial modulo 3 we have

X2 + 13 ≡ X2 + 1 (mod 3)

But this polynomial is irreducible in F3[X] so 3OK is prime and has norm 9.
It follows that the class group is generated by the class [p]. Note that since p2 = 2OK

which is principal, [p] must have order either 1 or 2.
Suppose that the order of [p] is order 1. Then we would be able to write p = (x +

y
√
−13)OK for some x, y ∈ Z. Passing to the norms we have 2 = |NK/Q(x + y

√
−13)| =

x2 + 13y2. But this equation clearly has no solutions in integers so [p] must have order 2.
Therefore, Cl(OK) = F2.

We can use this to find solutions to the equation y2 = x3 − 13 in Z. Indeed, suppose
that (x, y) is a solution to this equation. First assume that x is even. Then y2 ≡ 3 (mod 4)
which is a contradiction. Hence x must be odd. Furthermore, x and y are coprime. Indeed,
we may rewrite the equation as y2 − x3 = −13 to see that the only possible prime dividing
both y and x is 13. But then 132 would divide the left hand side of the original equation
and not the right hand side. Thus x and y are coprime.
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We now factor the equation in OK to get

(y +
√
−13)(y −

√
−13) = x3

Suppose that a prime ideal p divides both ideals (y +
√
−13)OK and (y −

√
−13)OK .

Then p divides (x)3 and, in particular, (x). But x is odd so p cannot divide 2OK . Observe
also that p divides 2yOK whence p divides yOK . But this is a contradiction to the fact that
x and y are coprime so there cannot exist a prime ideal dividing both (y +

√
−13)OK and

(y −
√
−13)OK . Hence by unique factorisation of ideals, there exists ideals a, b / OK such

that

(y +
√
−13)OK = a3, (y −

√
−13)OK = b3

Now Cl(OK) = F2 and so [a]3 = [b]3 = 1 whence a and b are principal. In particular,

(y +
√
−13)OK = (a+ b

√
−13)3OK

for some a, b ∈ Z. Hence, y +
√
−13 = (a+ b

√
−13)3u for some unit u ∈ O×K . Recall that a

unit in OK must have norm ±1. Suppose that c+ d
√
−13 is a unit for some c, d ∈ Z. Then

c2 + 13d2 = 1. This is only possible if c = ±1 and d = 0. Hence the only units in OK are
±1. Hence

y +
√
−13 = (a+ b

√
−13)3

Expanding the right hand side out (with the binomial theorem or otherwise) gives

y +
√
−13 = a3 + 3a2b

√
−13− 3 · 13ab2 − 13b3

√
−13

Comparing coefficients of
√
−13 yields

1 = 3a2b− 13b3 = b(3a2 − 13b2)

whence b = ±1. If b = 1 then 1 = 3a2− 13 which is not possible. Hence b = −1 which gives
1 = −3a2 + 13 whence a = ±2. This then gives

y = a3 − 39ab2 = ±8∓ 78

and thus y = ±70. Substituting ths into the original equation gives 702 = x3 − 13. Simpli-
fying gives us x3 = 4913. Note8 that 4913 = 173 and so x = 17. Thus, the complete list of
solutions to y2 = x3 − 13 is (17,±70).

Example 5.20. Consider the number field Q(
√

19). Then 19 ≡ 3 (mod 4) and so OK =
Z[
√

19]. We thus have that ∆K = 4 · 19. Note that the degree of the number field is 2 with
only one real embedding. We can thus calculate the Minkowski constant

cK =

(
4

π

)s
n!

nn
|∆K |1/2 =

2!

22
· 2
√

19 =
√

19 < 5

Hence Cl(OK) is generated by classes of prime ideals of norm at most 4. We now factorise
the ideals generated by the rational primes up to 4, namely 2OK and 3OK . The minimal
polynomial of

√
19 over Q is X2 − 19. Considering this modulo 2 we have

X2 − 19 ≡ X2 + 1 (mod 2)

= (X + 1)(X + 1)

8Oh God, don’t expect me to do this in the exam *flashbacks from elementary number theory*
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and so 2OK = p2 where p = (2, 1 +
√

19)OK is prime. Furthermore, [OK/p : F2] = 1 and so
N(p) = 2.

Now consider the minimal polynomial modulo 3:

X2 − 19 ≡ X2 + 2 (mod 3)

= (X + 1)(X − 1)

and so 3OK = q1q2 where q1 and q2 are prime and N(q1) = N(q2) = 3. We claim that
both q1 and q2 are principal. By Dedekind’s Theorem, we can write q1 = (3, 1 +

√
19)OK .

To show that q1 is principal, it suffices to show that it contains a principal ideal whose
norm equals that of q1. It is easy to see that 4 +

√
19 ∈ q1. Then N((4 +

√
19)OK) =

|NK/Q(4 +
√

19)| = |42 −
√

19
2| = 3 as desired. Hence q1 is principal. A similar argument

shows that q2 is also principal. Hence Cl(OK) is generated by [p]. Now, [p] must have order
either 1 or 2 since p2 is principal. Suppose that p has order 1. This is equivalent to p being
principal. We claim that pqi is principal for some i. Since qi is principal, this will imply
that p is principal. It is easy to see9 that 5−

√
19 ∈ pq1. So

N(pq1) = N(p)N(q1) = 2 · 3 = 6 = |NK/Q(5−
√

19)| = N((5−
√

19)OK)

and so pq1 = (5−
√

19)OK whence the product is principal. Hence p is principal. This means
that [p] has order 1 in Cl(OK) whence the class group is trivial. Thus OK is a principal
ideal domain and, in particular, a unique factorisation domain.

Theorem 5.21 (Hermite-Minkowski). Let K be a number field of degree n ≥ 2 such that
n = r + 2s. Then

|∆K | ≥
π

3

(
3π

4

)n−1

> 1

Proof. Let [I] ∈ Cl(OK) be an ideal class. By Corollary 5.16, there exists an integral
representative of [I], say I, such that N(I) ≤ cK . But 1 ≤ N(I) so cK ≥ 1. This implies
that

|∆K |1/2 ≥
(π

4

)s nn
n!

and so

|∆K | ≥
(π

4

)2s n2n

n!2

Since π/4 < 1 and n ≥ 2s we have

|∆K | ≥
(π

4

)n n2n

n!2
=: an

Now,

a2 =
π2

4
=
π

3

(
3π

4

)
9the product contains 6 and it also contains −(1 +

√
19)
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Using the binomial theorem, we obtain the estimate

an+1

an
=
π

4

(
1 +

1

n

)2n

>
π

4

(
1 +

2n

n

)
=

3π

4

And so

an > a2

(
3π

4

)n−2

=
π

3

(
3π

4

)n−1

Theorem 5.22 (Hermite). Let n ≥ 1 be a natural number. Then there are only finitely
many number fields K such that |∆K | ≤ n.

Proof. Let K be a number field and fix a natural number N ∈ N. Suppose that |∆K | = N .
By the Hermite-Minkowski Thereom, there exists an upper bound on the degree of n = r+2s,
depending only on N . Hence we may assume that N and n are both fixed natural numbers.
We need to show that there are only finitely many number fields K such that |∆K | = N
and [K : Q] = n.

Let Λ = σ(OK) be the lattice equal to the image of the canonical embedding σ in
Rr × Cs ∼= Rn. By Proposition 5.12, covol(σ(OK)) = 2−s|∆K |1/2.

Consider the set M of elements (y1, . . . , yr, z1, . . . , zs) ∈ Rn satisfying

1. if r > 0 then

|y1| ≤
2r+3s−1

πs
N1/2, |yi| ≤

1

2
for i 6= 1, |zi| ≤

1

2

2. if r = 0 then

|Im(z1)| ≤ 2r+3s−2

πs−1
N1/2, |Re(z1)| ≤ 1

4
, |zi| ≤

1

2
for i 6= 1

It is easy to see that M is compact and symmetric. With a little bit of geometric intuition,
we see that M is convex10 and vol(M) = 2r+sN1/2 = 2n covol(Λ). Appealing to Minkowski’s
Convex Body Theorem, there exists a non-zero x ∈ OK such that σ(x) ∈ M . We see that
the conjugates of x are all bounded above by a constant depending only on N . Since x
is an algebraic integer, the coefficients of its minimal polynomial are integers. Since such
coefficients are the elementary symmetric polynomials in the conjugates of x, they must all
be bounded above by a constant depending only on N . Thus there are only finitely many
choices for such coefficients. If we can show that K = Q(α) then we are done.

Suppose that r > 0. Then

|NK/Q(x)| =

∣∣∣∣∣
n∏
i=1

σj(x)

∣∣∣∣∣ ≤ |σ1(x)|2−(n−1)

Recall that |NK/Q(x)| is an integer. It then follows that |σ1(x)| > 1. Let τ be the restriction
of σ1 to Q(x). Recall that there are exactly [K : Q(x)] extensions of τ to an embedding of
K into C. Label such an extension τ . Then

|τ(x)| = |σ1(x)| > 1

10in the r > 0 we have a product of intervals and discs, in the r = 0 case, we have a product of a rectangle
with discs
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But there is only one such embedding σi satisfying this property and thus [K : Q(x)] = 1
whence K = Q(x).

Now suppose that r = 0. Then a similar argument shows that |σ1(x)| = |σ1(x)|. Thus
σj(x) 6= σ1(x) unless σj(x) = σ1(x). We need to rule out this case in order for the previ-
ous argument to follow through. Assume that σ1(x) = σ1(x). Then σ1(x) is real and so
Im(σ1(x)) = 0. Then

|NK/Q(x)| =

∣∣∣∣∣
n∏
i=1

σi(x)

∣∣∣∣∣ = |σ1(x)|

∣∣∣∣∣
n∏
i=2

σi(x)

∣∣∣∣∣ ≤ 1

4
·
(

1

2

)n−1

Now the norm must be non-zero and integer but this is a contradiction. Hence σ1(x) is not
real and σ1(x) 6= σ1(x). The argument for the previous case then applies in this situation
and K = Q(x).

6 Ramification Theory

Definition 6.1. Let K be a number field and p a prime number. Suppose that pOK admits
the unique factorisation

pOK = pe11 · · · perr

We say that p ramifies in K if ei ≥ 2 for some 1 ≤ i ≤ r.

Theorem 6.2. Let K be a nunber field with discriminant ∆K and p a prime number. Then
p ramifies in K if and only if p divides ∆K.

Proof. Let x1, . . . , xn be an integral basis for OK . Recall that

∆K = detTij

where Tij is the matrix corresponding to the linear map

T : OK ×OK → Z
T (x, y) = TrK/Q(x, y)

evaluated at the basis x1, . . . , xn. We may ‘reduce’ this mapping modulo p to obtain a
mapping

T : OK/pOK ×OK/pOK 7→ Z/pZ

If xi ≡ xi (mod pOK) then T is given by the matrix T ij = TrK/Q(xixj).
11

Then p divides ∆K if and only if p divides det(Tij) if and only if det(T ij) = 0. Hence if
suffices to show that p ramifies in K if and only if det(T ij) = 0.

Suppose pOK admits the unique factorisation

pOK = pe11 · · · perr

By Dedekind’s Theorem12, we have

OK/pOK ∼= Fp[t]/(he11 )⊕ · · · ⊕ Fp[t]/(herr )

11here we are abusing notation slightly, our trace is understood to be a linear map OK/pOK → Z/pZ.
12needs clarification: isn’t Dedekind’s only applicable when there exists a power basis for the ring of

integers?
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where h1, . . . , hr ∈ Fp[t] are distinct irreducible polynomials. We thus see that p ramifies in
K if and only if at least one of the factors in the above decomposition is not a field. Then

T =

 T 1 · · · 0
. . .

0 · · · T r


where T i is the trace pairing

Ti : Fp[t]/(heii )× Fp[t]/(heii )→ Fp

Now suppose, without loss of generality, that e1 ≥ 2 and all other ei = 1. It suffices to prove
that det(Ti) = 0 and det(Ti) 6= 0 for all i 6= 1.

For the first case, note that Fp[t]/(hi) is a finite field. Label it k with [k : Fp] = deg hi = n.
Recall that any finite field is perfect and thus k/Fp is a finite separable extension. By the
primitive element theorem, there exists an x ∈ k such that k = Fp(x). Then 1, x, . . . , xn−1

is an Fp-basis for k. The lm-entry for Ti is then given by

Trk/Fp(x
l+m−2) =

∑
q

xl+m−2
q

where the xq are the conjugates of x. Then

Ti =


1 · · · 1
x1 · · · xn
... · · · ...

xn−1
1 · · · xn−1

n


This is a Vandermonde matrix with determinant detTi =

∏
r<s(xr − xs). Recall that the

conjugates of x are exactly the other elements of the basis. Hence xr 6= xs for all r < s and
thus the determinant is non-zero. This proves the first case.

For the second case, choose y ∈ (h1) (mod (h1)e1) such that y 6= 0. We may extend y to
an Fp-basis of Fp[t]/(he1i ).13 Note that ye1 = 0 so every xy is nilpotent. So the trace of xy
is equal to 0 for all x. hence in T 1, there is a row of zeroes which is the same as detTi = 0
and we are done.

Corollary 6.3. Let K be a number field. Then there are only finitely many primes that
ramify in K. In particular, at least one prime ramifies in K.

Proof. Let ∆K be the discriminant of K. The primes that ramify in K are exactly the
prime divisors of ∆K . By the Hermite-Minkowski Theorem, we have |∆K | > 1. From this
we conclude two things. ∆K 6= 0 which means only finitely many primes can ramify in K.
Secondly, ∆K must have at least one prime divisor and thus at least one prime ramifies in
K.

7 Units of OK
Let K be a number field. We denote the multiplicative group of units of K as UK .

13it is indeed a vector space, we do not need to worry that it is not a field.
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Lemma 7.1. Let K be a number field and µ ∈ OK a root of unity. Then µ is a unit. In
particular, the set of all roots of unity in OK is a subgroup of UK, which we denote µK.

Proof. Let µ be a root of unity. Then µn = 1 for some n ∈ N. Hence µ is a root of the
polynomial Xn − 1 which is monic with integer coefficients. Thus µ ∈ OK .

1 is clearly a root of unity itself. Let µ, ν be two roots of unity. Then there exists,
m,n ∈ N such that µm = 1 and νn = 1. Then (µν)mn = 1 and so mn is a root of unity.
Furthermore, given any root of unity µ such that µn = 1, we have µ−n = 1−1 and so
(µ−1)n = 1 whence the inverse of µ is a root of unity. Hence the set of all roots of unity in
UK is a subgroup.

Lemma 7.2. Let K be a field and G ⊆ K× a finite subgroup. Then K is cyclic and consists
of roots of unity.

Proof. Let n be the least common multiple of the orders of all elements of G. Then xn = 1
for all x ∈ G. Since the polynomial Xn − 1 has at most n distinct roots in K, we have that
|G| ≤ n. Now at least one element of G must have order equal to n so 1, x, . . . , xn−1 are n
distinct elements in G so |G| = n and is generated by x.

Theorem 7.3 (Dirichlet’s Unit Theorem). Let K be a number field of degree n = r + 2s.
Then

UK ∼= µK ⊕ Zr+s−1

and µK is cyclic.

Proof. Consider the logarithmic mapping

L : OK\ { 0 } → Rr+s

Defined by

L(x) = (log |σ1(x)|, . . . , log |σr(x)|, . . . , 2 log |σr+1(x)|, . . . , 2 log |σr+s(x)|)

First observe that the restriction of L to UK is a homomorphism between the multiplicative
group of OK and the additive group of Rr+s. By an abuse of notation, we will also call this
restriction L. Furthermore, the image of UK is contained in the hyperplane W ⊆ R given
by

r∑
i=1

xi +
s∑
i=1

yj = 0

Indeed, every x ∈ UK satisfies NK/Q(x) = ±1 so

1 =
n∏
i=1

|σi(x)| =
r∏
i=1

|σi(x)|

(
s∏
i=1

|σi(x)|

)2

Passing to the logarithm on both sides shows that L(x) is contained in W .
We first claim that for all compact subsets B ⊆ W , B′ = L−1(B) is finite. Since B is

bounded there exists an a ∈ R such that a > 1 and

1

a
≤ |σi(x)| ≤ a
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for all x ∈ B′ and for all i = 1, . . . , r + s. Hence the coefficients of the characteristic
polynomial of x are bounded since they are exactly the elementary symmetric polynomials
in the σi(x). Furthermore, these coefficients are necessarily integers since x ∈ OK . Hence,
given B, there are only finitely many possible characteristic polynomials meaning there are
only finitely many possible x.

We next claim that L(UK) is discrete and kerL is finite. To prove this claim, we must
first show that L(UK)∩B is finite for every compact subset B ⊆ W . We know that L−1(B)
is finite so L(UK)∩B = L(L−1(B)) is also finite as desired. Furthermore, kerL = L−1({ 0 }).
Now, { 0 } is compact and contained is a subset of W so kerL is finite.

By Theorem 5.3, L(UK) is a finitely generated Z-module of rank at most m ≤ r+ s− 1.
We can summarise this in the following short exact sequence:

0 kerL UK L(UK) 0

so that UK/ kerL ∼= L(UK) ∼= Zm for some m ≤ r + s− 1.
We now claim that kerL = µK and is cyclic. It is easy to see that kerL is the set of

all elements of UK that have finite order. Indeed, since kerL is finite, any x ∈ H must
have finite order. Conversely, suppose that x ∈ UK\ kerL has finite order. Then L(x) 6= 0.
But x has finite order so there exists a non-zero natural number m such that xm = 1 and
0 = L(1) = L(xm) = mL(x) 6= 0 which is a contradiction. It then easily follows that
kerL = µK . Furthermore, Lemma 7.2 guarantees that this group is infact cyclic.

We thus see that UK ∼= µK ⊕ Zm for some m ≤ r + s− 1. To finally prove the theorem,
we need to show that m = r + s − 1. We shall only prove this in the real quadratic case
where r = 2 and s = 0. In this case, we need to prove that there exists a non-trivial unit.

Let ∆K be the discriminant of K and σ the canonical embedding of K. Set a = |∆K |1/2.
For all l1 > 0, let l2 be such that l1l2 = a. Consider the box

Bl = { (y1, y2) ∈ R2 | |yi| ≤ li }

Then Bl is clearly symmetric, convex and compact with volume given by vol(Bl) = 4l1l2 =
4a = 2n covol(σ(OK)). By Minkowski’s Convex Body Theorem, there exists a non-zero
x ∈ Bl ∩ σ(OK). In other words, there exists a non-zero x ∈ OK such that |σ1(x)| ≤ l1 and
|σ2(x)| ≤ l2. Observe that

|NK/Q(x)| = |σ1(x)σ2(x)| ≤ l1l2 = a

Now let l1 → 0+. Then there exist infinitely many x1, x2, · · · ∈ OK such that |σ1(xk)| → 0.
Hence it is clear that there are infinitely many distinct xk satisfying |NK/Q(xk)| ≤ a. Recall
that xk ∈ OK is an algebraic integer so the norm must be a rational integer. Hence there
are only finitely many choices for such a norm. Now recall that N((x)) = |NK/Q(x)|. Thus
there are only finitely many choices for N((xk)). We must therefore have that (xk) = (xl)
for some distinct xk and xl. But this is equivalent to xk/xl being a unit and we are done.
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