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1 Introduction

Definition 1.1. Let K be a finite degree algebraic field extension of . Then K is said to
be a number field.

Example 1.2. Let f(X) € C[X]| be a monic irreducible polynomial. If a € C is a root of
f(X) then Q(«) is a number field. To see this, consider the following ring homomorphism

v QIX] = Qlof

X =«

Then ker ¢ = (f) and thus Q[X]/(f) = Q[«]. Now Q[X] is a PID and (f) is maximal since
f is irreducible. Hence Q[X]/(f) is a field and we may write Q[X]/(f) = Q(«). Finally,
[Q(a) : Q] = deg f since Q(a) has a Q-basis of {1,a,a?,..., a8/~ }

Example 1.3. Let a = v/2. Then « satisfies the monic irreducible polynomial X2 — 2 over
Q. Hence Q(v/2) is a number field.

Example 1.4. Let f(X) = X® —2 € Q[X]. Then f has roots a; = v/2,ay = wv/2,a3 =
w22 where w is the primitive cube root of unity. Then

Q() = Q[X]/(f)
are all number fields but Q[a;], Q[as], Q[as] are all distinct subfields of Q.
Definition 1.5. An algebraic number is any element of a number field.

Definition 1.6. Let K be a number field. If a € K satisfies a monic polynomial over Z
then « is said to be an algebraic integer. The set of all algebraic integers of K is denoted
Ok.

Proposition 1.7. Let K be a number field. Then « is an algebraic integer of K if and only
if its minimal polynomial over Q has integer coefficients.

Proof. Suppose that the minimal polynomial of o has integer coefficients. Then, by defini-
tion, « is an algebraic integer.

Conversely, suppose that « is an algebraic integer. Then « is a root of a monic polynomial
with integer coefficients, say f(X). Let g(X) be its minimal polynomial. Then g(X)|f(X).
Then there exists a monic polynomial h(X) € Q[X] such that g(X)h(X) = f(X). We need
to show that g(X) also has integer coefficients. Suppose that it doesn’t. Then there exists
a prime number which divides the denominator of one of the coefficients of g. Let u be the
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least integer such that pg(X) has no coefficients whose denominators are divisible by p.
Similarly, let v be the same for A(X). Then

p"g(X)p"h(X) = p" " g(X)M(X) =0 (mod p) € F,[X]

This is a contradiction since p"g(X) and ph(X) are non-zero polynomials whose product
is 0 but F,(X) has no zero divisors. O

Corollary 1.8. The algebraic integers of Q are exactly 7Z.

Proof. Let a/b € Q. Then its minimal polynomial over Q is X — a/b. Now, the previous
proposition implies that a/b is an algebraic integer if and only if b = 1. O

Theorem 1.9. Let K be a number field. Then o € K is an algebraic integer if and only if
Za] is finitely generated.

Proof. Suppose that « is an algebraic integer. Let f(X) be its minimal polynomial of degree
n. Then by Proposition , f(X) is monic with integer coefficients. Now any o can be
written as a Z-linear combination of {1,a,a?,...,a" !} for all u > n. Hence

Zo) =Z S Za® - D Za™ "

whence Z[a] is finitely generated.

Conversely, suppose that Z[a] is finitely generated. Let a;,. .., a, be generators for Z[a].
Then there exists polynomials f;(X) € Z[X] such that a; = fi(a) for all 1 < i < n. Fix
some natural number N > deg f; for all 7. Then we may write

OéN = Z biai
i=1
for some b; € Z. That is to say
O[N — szfz(oz) =0
i=1
Taking
FX) = XY = bifi(X)
i=1

we may see that « is an algebraic integer. O
Corollary 1.10. Let K be a number field. Then Ok s a ring.

Proof. Let o, f € Ok. Then the previous theorem implies that Z[«a] and Z[5] are finitely
generated whence Z|a, 3] is finitely generated. Z[«, ] is a ring and thus « &+ 5 and af5 are
in Z[a, f]. Z[a+ B] and Z|a5] are subgroups of Z|a, 8] and are hence finitely generated. By
the opposite implication of the previous theorem, we see that o £ 3 and af8 are in Og. [

Theorem 1.11. Let K = Q(\/d) for some square-free integer d. Then

{a+b/d|a,beZ} ifd#1 (mod 4)
OK:{{a—l-b(%g)‘a,beZ} ifd=1 (mod 4)
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Proof. Suppose o € K is an algebraic integer. Then o = a 4 bv/d for some a,b € Q and
satisfies some monic irreducible polynomial f(X) over Z. The conjugate of « is a — bV/d
and thus its minimal polynomial is

f(X) =X+ (20)X + (a® — b*d)

Necessarily, 2a,a? —b*d € Z. This implies that either a € Z or a = A/2 for some odd integer
A € Z. In the first case, we must then have that ?d € Z. Since d is square-free, this implies
that b € Z. Hence at the very least, the algebraic integers contain { a + bv/d | a,b € Z}.
In the second case we have
2

A
Z—lﬂdeZ (1)

Multiplying through by 4 we see that A% —4b*d € 4Z. We must therefore have that 4b°d € Z.
Since d is square-free, this implies that 2b € Z, say 2b = B. Equation [I| implies that b € Z
so B is an odd integer. Then

A? —B?*d=0 (mod 4)
with A and B both odd integers. But any odd integer is congruent to 1 modulo 4 so
1—d=0 (mod4)
Now this is only possible if d =1 (mod 4) and the result follows. ]

2 Norms, Traces and Discriminants

Definition 2.1. let L/K be a finite extension of number fields. Given « € L, consider the
K-linear map
ot L — L
T = ax
We define the norm of a, denoted Nz k() to be the determinant of the matrix of fi4.
Furthermore, we define the trace of «, denoted Try /x (), to be the trace of the matrix of

o Finally, we define the characteristic polynomial of «, denoted x/x()(X), to be
the characteristic polynomial of the matrix of p,.

Example 2.2. Let K = Q(2). Let a € Q(2) and fix the Q-basis of K, { 1,4/2}. To calculate
the norm and trace of a, it suffices to examine the effect of o on the basis elements. We
can write a = a 4+ by/2 for some a,b € Q. Then multiplication by « sends 1 to a + byv/2 and
sends V2 to av/2 + 2b. The matrix of Lo in the chosen basis is thus

a b
M= ( 2b a )
Hence Ng/g(a) = det M = a* — 2b* and Trg/g(e) = Tr M = 2a. We now calculate the
characteristic polynomial of « :
xr k(o) (X) = det (XI — M)

| X —a b

20 X-—a

= (X —a)* -2

= X? — 2aX +a® — 2




We see that the coefficient of X is minus the trace of a and its constant term is the norm
of alpha.

Lemma 2.3. Let K be a number field and f(X) € K[X] an irreducible polynomial. Then
f(X) cannot have a multiple root in an algebraic closure of K.

Proof. Let K be an algebraic closure of K. Suppose that f(X) has a multiple root in K,
say a. We may write f(X) = (X —a)™g(X) for some m > 2 and g(X) € K[X]. Calculating
the formal derivative of f(X) we have

F(X) =m(X —a)" 1g(X) + (X —a)"¢(X)

Hence f/(X) and f(X) have the factor (X —a)™ ! in common in K[X]. This implies that o
is a root of both f(X) and f/(X) meaning the minimal polynomial of « over K divides both
f(X) and f'(X). But f(X) was assumed to be irreducible so that common factor must be
f(X) itself. Now, deg f'(X) < deg f(X) meaning f’(X) is identically zero but this is not
possible since K has characteristic 0. O

Theorem 2.4. Let K be a number field and K an algebraic closure of K. If L/K is a finite
extension of degree n then there exist n distinct K-embeddings of L into K.

Proof. We shall prove the theorem by induction on [L : K]. First suppose that L = K(«)
for some a € K. Let f(X) € K[X] be the minimal polynomial of o over K. Then f(X)
has degree n and, by Lemma , it has n distinct roots in K, say & = o, ..., a,,. We thus
have n distinct K-embeddings given by

oL > K

o — o

Now suppose that m < n and that for any degree m extension of K, say F', there exist
m-distinct K-embeddings of F into K. Let L/K be an extension of degree n and suppose
that & € L. We have that K C K(a) C L. Let ¢ = [K(a) : K|. From the previous
paragraph, we know that there exists ¢ distinct embeddings of K («) into K. Since K(«) is
isomorphic to K (o;(a)) for all K-embeddings o; : K(a) — K, there exists an extension of
0; to an isomorphism 7; such that the following diagram commutes

By the tower law we have [L : K(a)] = [L : K(0i(a))] = n/q. Therefore, by the induction
hypothesis, there exist n/q distinct K (o;(a))—embeddings of L; into K, say 6;; for 1 < j <
n/q. Then 6,07, fori =1,...,gand j =1,...,n/q give n distinct K-embeddings of L into
K. O

Corollary 2.5. Let K be a number field of degree n. Then there exist n distinct Q-
embeddings of K into C.

Definition 2.6. Let L/K be an extension of number fields of degree n. Let a € L and
let oq,...,0, be distinct K-embeddings of L into an algebraic closure of K, say K. Then
o1(a),...,0,(cx) are the conjugates of .



Proposition 2.7. Let L/K be an extension of number Jields and K an algebraic closure of
K. Let oy,...,0, be the distinct K-embeddings of L into K. Then for all o € L we have

n n

Npk(a) =[] oil@), Trix(e) =) oila)

i=1 =1

Proof. Let f(X) be the minimal polynomial of a over K and let m be its degree. Let
Xk (o)/k (@) be the characteristic polynomial of v. We first claim that f(X) = xx(a)/x (@) (X).
Both polynomials are monic by their definition and the degree of X x(ay/x () is also m. Let
Lo be the linear map given by multiplication of a. By the Cayley-Hamilton theorem, we
have that Xk (a)/x (ta) = 0. It is easy to see that Xr(a)/r(@)(1a) = fixym),x (@) Hence a is
a 100t of X (a)/x(X). This implies that f(X)|xx(a)/x(X). But these polynomials have the
same degree and are both monic so we must have that f(X) = xk )k (X).

We now construct the matrix of y, in a K-basis of L. Let {1,...,a™ !} be a K-basis
of K(«). If k is the degree of L/K(«) then let {31,...,5: } be a K(«)-basis of L. Then
{a'B;} for 0 < i <mand 1 < j <kisa K-basis of L. Then the matrix of u, can be
written as

0 0 - a
B 0 0 Lo o
0 B 0 . -

a — > = a

a 0 0 0 ?
—_——— O e e Qp—1

k times

wehre a; are the coefficients of the minimal polynomial of a.. It then follows that
NL/K(O‘) /K(Oé)k (2)

Trp/k(a) = kTFK )i (@) (3)

Xo/k (@) (X) = XK (a)/x (@)

2
s
ol
I
g
»
=
=

Hence

fX)=(X—a1)...(X —an)

= X" — (ia) Xm_1+---i~ﬁai
=1 =1

= X" — Tric(ayx (@) X"+« + £ Nga) /(@)

This, together with the previous equations, gives us

Now, f(X) has m distinct roots in K and this determines the m distinct K-embeddings
of K(a) into K. By Theorem , there are k ways in which we can extend these to K-



embeddings of L. Hence

N k() = H oi(a)

Trr k(o) = Z oi(a)

]

Example 2.8. Consider the number field extensions Q € Q(i) € Q(4,v/2). There are four
embeddings of Q(i,/2) into C given by

o101, V2 V2

09 11— —1, V2= V2

O3 11> 1, V2 —V2

04:ir—>—i,\/§>—>—\/§

We have that

Natyala + ) = a1(a -+ bjoa(a+ ib) = o + 7

No(iva)/ol@ +ib) = a1(a +ib)os(a + i)os(a + ib)os(a + ib) = (a® + b*)?

Corollary 2.9. Let K be a number field and o € K an algebraic integer. Then the norm
and trace of a are rational integers.

Proof. By the proof of the theorem, the characteristic polynomyial of « is a power of the
minimal polynomial and thus has rational integer coefficients. O

Corollary 2.10. Let K be a number field and o € Og. Then the norm of « is equal to £1
if and only if o is a unit in O.

Proof. First suppose that the norm of « is equal to £1. Let f(X) = > a; X" be its
minimal polynomial over K. Then f(X) has constant term +1. We claim that 1/« is a root
of the polynomial 1 4 a, X + ---+ X™. We have that

g(X)=X"( X"+ a, X '+ £1)=X"f(1/X)

Hence g(1/a) = (1/a)"f(a) = 0. Clearly, g(X) € Z[X]. If the coefficient of the leading
term is 1 then we are done, if not then —g(X) is also a monic polynomial with rational
integer coefficients with 1/« as a root and thus « is a unit in Ok.

Conversely, suppose that « is a unit in Og. Since « is a unit, we have that 1/a € Ok.
Then

1 = Ngyg(1) = Ngjg(a) Nrjo(l/a)

By the previous corollary, we know that both Ng/g(a) and Ng/g(1/a) are elements of Z so
we must have that N /g(a) = £1. O

Lemma 2.11. Let K be a number field. Then QO = K.



Proof. 1t is trivial from the definition of K that QO € K.

Conversely, suppose that a € K. We claim that there exists a d € Z such that ad € Og.
Indeed, let f(X) be the minimal polynomial of o over Q. Let d be the least common multiple
of the denominators of the coefficients of f(X). Then

9(X) = d**#! f(X/d)
is a monic polynomial with coefficients in Z and ad as a root. Hence ad € Ok 0

Theorem 2.12. Let K be a number field. Then Ok is a free Abelian group of rank n =
K : Q).

Proof. Fix a Q-basis of K, say {a,...,a,}. By Lemma each a; gives rise to an
algebraic integer f3;. Furthermore, it is easy to see that the set { fy,..., 5, } is still Q-
linearly independent and spans K. Hence any = € Ok can be written in the form

n
T = Z ¢ifi
i=1

for some ¢; € Q. We claim that the denominators of the ¢; are bounded for all x € Ok and
¢; € Q. Suppose the contrary. Then there exists a sequence { z; }j>1 where

n
Tj = E Cij Bi
i=1

for some ¢;; € Q such that the greatest denominator of the ¢;; tends to infinity as j — oo.
Now let o1,...,0, be the distinct Q-embeddings of K into an algebraic closure of K,
say K. Then

Niso(z;) = [] om(z;)
1__[1 Om (2; Cijﬁi)
= H Cz’jam(ﬁi)

m=1 i=1

Now, N /g(i;) is necessarily an integer and the right hand side is a homogeneous polynomial
in the ¢;; with fixed coefficients. Hence we must have that the denominators are bounded,
say by some constant B. We then have that

1 n
Ok C Egz?zﬁi

The right hand side of this inclusion is a free Abelian group which means Ok must be a free
Abelian group. Since Ok contains a set of n linearly independent elements, it must have
rank n. O]

Definition 2.13. Let L/K be an extension of number fields and S = {z1,...,z,} C L.
We define the discriminant of S to be

AL/K(S) = det TI"L/K(ZEZ'ZL‘]‘)
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Proposition 2.14. Let L/ K be an extension of number fields and let oy, . .., o, and B, ..., By
be bases for this extension. Suppose that C = (c¢;;) is the change of basis matriz from the
B-basis to the a-basis. Then

AL/K(OQ, e ,Oén) = det(C’)2AL/K(6, e 7671)
Proof. We have that

n n
aiok = Y cijenBiB

j=1 i=1
Passing to the trace yields
n n
Trp k(0gap) = Z Z cijerm Trr ke (Bi51)
j=1 I1=1

Let A = (Trp/k(ovay)) and B = Trp i (8i3;). Then the above calculations imply that
A = CBC". The proposition then follows by passing to the determinant. O

Proposition 2.15. Let L/K be an extension of number ﬁel@ and let oy,...,0, be the
distinct K -embeddings of L into an algebraic closure of K, say K. If S ={xy,...,2,} C L
then

Ap/k(S) = [det Uz‘(%’)]z
Proof. By Proposition we have

n n

Trpk(z;) = Z op(Tiz;) = Zak(xi)ak(xj)

k=1 k=1
If A is the matrix whose (i)™ entry is o;(z;) then (Try x(z;z;)) = AA'. The proposition

then follows by passing to the determinant in the previous equation. O

Proposition 2.16. Let L/K be an extension of number fields and let S = {aq,...,an } C
L. If Apk(S) # 0 then S is linearly independent. Conversely, if S = {a1,..., 0} is a
K-basis for L then Ap i (S) # 0.

Proof. First suppose that S = {«,...,a,} are linearly dependent. Then there exists
ai,...,a, € K, not all zero, such that

n

0= Zaiai

i=1
Hence for any 1 < j < n we have

n n

0 = TI'L/K(Oéj Z CLiOéi) = Zai TI'L/K<OéiC¥j)

i=1 i=1
Writing this as a matrix equation yields
3]

(Trp/(ciag)) | 2 [ =0

Qn



Which implies that Az, (S5) = det(Try/k(a;a;)) = 0.

Conversely, suppose that S = {a1,...,a, } is a K-basis for L and that Ay /k(S) = 0.
Then there exists a1, ..., a, € K such that for all 1 < j <n we have > | a; Tr g (o) =
0. Now set aw =Y " | a;;. « is clearly non-zero since the «; are a K-basis for L and the g;
are not all zero. Now let § € L. We may write § = > | b;oy; for some b; € K. Then

TI"L/K(BOJ) = TI'L/K(Oé Z bzaz)
i=1

= Zbi Trr i (0oy)

=1

= Z b; TrL/K(Z a;joo)
i=1 1

j=

= ZZbiaj TI"L/K(OéjOéi) = O

i=1 j=1

In particular, we may take § = a~'. Then Try/k(Ba) = Try k(1) = 0. This is a con-
tradiction to the fact that the characteristic of K is zero. We must therefore have that

Ar/k(S) # 0. L

Proposition 2.17. Let K be a number field and suppose that L = K(a) for some alge-
braic number o. Let f(X) € K[X] be the minimal polynomial of o over K. Let S =
{1,a,02,...,a" 1} be the power K-basis for L. If a = ay, ...,y are the roots of f(X) in
an algebraic closure of K then

Apk(S) =disc f(X) = H(ai — )

Proof. Let oy,...,0, be the distinct K-embeddings of L into an algebraic closure of K
where 0;(a) = a;. Then for all 0 < j < n — 1 we have 0;(a?) = . Proposition then
implies that

2

2 n—1
1 oy of o X
ay Al ay”
2 n—1
1 o o oy

This matrix on the right hand side is the Vandermonde matrix whose determinant is given
by [;; @j — @i. The square of this is exactly the discriminant of f(X). O

Corollary 2.18. Let K be a number field and L = K(«) for some algebraic number «. Let
f(X) € K[X] be the minimal polynomial of o over K. Let S = {1,a,a? ...,a"" '} be the
power K-basis for L. Then

Arx(8) = ()G Npk(F/(@)

Proof. Let o = a, ..., a, be the roots of f(X) in an algebraic closure of K. Then

Api(S) = [J(ei — ay)* = (-1 [T(ai =) = (-1 TTT( = ay)

i<j i#] i=1 jAi



Now, f(X) = (X —z1)...(X —a,) and thus f'(X) = >, [[; 4 (X —ay). If we substitute
a; for X in f'(X), only the k =i term remains and we get f'(a;) = [, ;(c; — ;). Hence

AL/K H f Oéz

Furthermore, if oy, ..., 0, are the distinct K-embeddings of L into an algebraic closure of
K, we have f'(a;) = f'(0:(a)) = 0;(f'(«)). We thus obtain

Apic(S) = (~1D)E T o f(@) = (~1)E) N (£(a)

i=1
[l

Definition 2.19. Let K be an extension of number fields. Suppose that { aq,...,a, } C K
is a Q-basis for K. Then such a basis is an integral basis if

O =Zoa; ® -+ P Zay,
Remark. Theorem guarantees the existence of an integral basis for any number field.

Lemma 2.20. Let K be a number field. Then the discriminant of any integral basis of K
1s tnvariant under a change of basis to any other integral basis.

Proof. Let S ={ay,...,a, }and T = { 31, ..., B, } be integral bases for K. By Proposition
2.14] we have

Agya(S) = det(C)* Mgy (T)

where C' is the change of basis matrix that sends the §-basis to the a-basis. Now, we must
have that det C' is a unit in Z meaning it is equal to 1. This proves the lemma. O]

Definition 2.21. Let K be a number field. We define the discriminant of K, denoted
Ak, to be the discriminant of any integral basis of K.

Theorem 2.22 (Stickelberger’s Theorem). Let K be a number field. Then Ak is congruent
to 0 or 1 modulo 4.

Proof. Let S = {ay,...,a,} be an integral basis for K. Let o01,...,0, be the distinct
embeddings of K into an algebraic closure of Q. Then

A = Aryx(S) = [det(oi(a;)) [Z [ oilax) ]

TeS, i=1

We may split the sum up into even and odd permutations as follows

Z Hai(aﬂ(i)% N = Z Hai(aﬂ(i))

weS, =1 meSy, =1
sgn(m)=1 sgn(m)=—1

Now let L be a Galois extension of K. Then given any o € Gal(L/Q), we have that o
permutes the embeddings o;. Hence we must have one of the following: o(P) = P,o(N) = N
or o(P) = N,o(N) = P. In both cases, we see that o fixes both P+ N and PN. By Galois
Theory, this implies that P+ N and PN are both rational numbers. Furthermore, it is easy
to see that P and N are rational integers since the «; are algebraic integers. Finally,

Ag =(P—N)*>=(P+ N)> - 4PN
So we must have that A = 0,1 (mod 4). O
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3 Ideal Factorisation

In this section, by integral domain, we shall mean an integral domain that is not a field.

Lemma 3.1. Let R be a ring and I <R a prime ideal. Suppose that Jy,...,J,<R such that
Jy...JJxy CI. Then there exists at least one 1 < i <n such that J; C I.

Proof. Let j = Y 1 jik---Jnk € Ji...J, where jy € J;. By hypothesis, we have that
j € I. By the definition of an ideal, we have that jix...j € [ for all 1 < k < m. By
the definition of a prime ideal, we must have that at least one of the j; € I. But j; is an
arbitrary element of J; and thus J; € I. O

Lemma 3.2. Let R be a Noetherian integral domain and I < R a non-zero ideal. Then I
contains a product of non-zero prime ideals.

Proof. Let S be the set of all non-zero ideals of R that do not contain a product of prime
ideals. Since R is Noetherian, S contains a maximal element, say I. By definition, I is not
prime so there must exist some z,y € R\ such that zy € I. Then (z) 4+ I and (y) + [
are not in S by the maximality of I. They thus each contain a product of prime ideals.
Now, since R is an integral domain, we have that ((z) + I)((y) + I) is nonzero. But this
ideal product is contained in I which implies that I contains a product of prime ideals - a
contradiction. O

Definition 3.3. Let R be an integral domain and K its field of fractions. We define a
fractional ideal of R to be an R-submodule of K, say M, such that dM C A for some
d € A\{0}. Equivalently, any fractional ideal is given by

1
;l[:{l'GKldeI}

where I < R is an ideal.

Remark. Henceforth, we shall refer to ordinary ideals as integral ideals to distinguish
them from fractional ideals.

Lemma 3.4. Let R be Noetherian. Then the fractional ideals of R are the finitely generated
R-submodules of K.

Proof. First suppose that M is a fractional ideal. Then we may write M = 1/dI for some
integral ideal I. Since R is Noetherian, [ is finitely generated. Then M is a finitely generated
R-submodule of K.

Conversely, suppose that M is a finitely generated R-submodule of K. Them M =

(mq,...,my) for some my,...,m, € M. Now each m; = 1/r; for some r; € R. So we have
(H ri> MCR
i=1
which is exactly what it means for M to be a fractional ideal of R. O]

Definition 3.5. let R be a ring, L its field of fractions and M and N be fractional ideals
of R. Then we define the following fractional ideals:

k

i=1

M ={zeK|zMCR}

mieM,mEN,keN}
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Definition 3.6. Let R be an integral domain. We say that R is a Dedekind domain if it
is Noetherian, integrally closed and every non-zero prime ideal is maximal.

Lemma 3.7. Let R be a unique factorisation domain. Then R is integrally closed in its

field of fractions K.
Proof. Let o € K be integral over R. Then « satisfies a monic polynomial
X" 4 a1 X"+ 4 ag
with each a; € R. Since R is a UFD, we may write a = ¢/d with ged(c,d) € R*. We then

have that
(E>n + (f)n_l +ot
d Ap—1 d Qo

Multiplying through by d" we have

"+dz=0
for some z € R. It follows that d|c". Now, if d is not a unit then ged(c, d) € R* so we must
have that d is a unit. But then oo = cd™! € R. [
Proposition 3.8. Let R be a principal ideal domain. Then R is a Dedekind domain.

Proof. Clearly, any PID is necessarily Noetherian. Furthermore Lemma implies that R
is integrally closed since any PID is necessarily a UFD. Finally, by a theorem of elementary
ring theory, every prime ideal in a PID is maximal. Hence R is a Dedekind domain. [

Proposition 3.9. Let R be a Dedekind domain with field of fractions K. If p is a non-zero
prime ideal of R then

1. #R
2. pp" #p
3. pp' =R
Proof.
Part 1: Let a € p\ {0}. By Lemma [3.2] we can write
(@) 2q1---qn
for some non-zero prime ideals qi,...,q, and n minimal. Then by Lemma |3.1] we have

that, up to renumbering, q; C p. But q; is a non-zero prime ideal and is thus maximal by
hypothesis. We must then have that q; = p. Now denote b = qs5...q,. Then

pbC(a) Cp

Furthermore, b  (a) by minimality of n. Hence we may choose b € b such that b & (a).
Then bp C (a) whence ba~'p C R. Hence ba—' € p’ but ba™! ¢ R.

Part 2: Suppose that pp’ = p. Fix an x € p’. Then z™p C p for all n € N. This implies that
Rz] is a fractional ideal of R. By Lemma [3.4 we know that R[z] is a finitely generated
R-submodule of K = Frac(R). Hence, z is integral over R. But R is integrally closed so we
must have that © € R. This implies that p’ C R. But p is an integral ideal of R so R C p’.
Hence R = p’ but this contradicts Part 1.

Part 3: Since p is an integral ideal of R, we have that R C p’. This implies that p = pR C pp’.
Now, p is necessarily maximum so we must have that either pp’ = p or pp’ = R. The former
is a contradiction to Part 2 so the latter necessarily holds.

O
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Theorem 3.10. Let R be a Dedekind domain and I < R a non-zero proper ideal. Then
there exists distinct non-zero prime ideals p1, ..., p, of R and natural numbers ey, ..., e, all
greater than or equal to 1 satisfying

I=py .. py
The above decomposition is unique. Furthermore, we express R as the empty product.

Proof. Denote by S the set of all ideals in R that cannot be expressed as a product of prime
ideals. Suppose that S is non-empty. Since R is Noetherian, there exists a maximal element
of S, say b. By hypothesis, b # R so there exists a maximal prime ideal p such that b C p.
By Proposition we have bp’ C pp’ = R. Therefore, bp’ is an integral ideal of R. By
definition, we have that R C p’. From this we see that b C bp’. Now, the same proof
as for Part 2 of Proposition implies that b # bp’ whence bp’ ¢ S. Then bp’ admits a
factorisation into prime ideals

/

bp'=q1...q,

where each ¢; is a non-zero prime ideal of R. Multiplying both sides by p yields

b=pq1...qn

which implies that b ¢ S. This is a contradiction so we must have that S is empty. Thus
all non-zero ideals of R admit a factorisation into prime ideals.
To prove uniqueness let I < R be a non-zero proper ideal and suppose that

I=pi oy =ap .y

where the p; and the g; are all non-zero prime ideals. We have that p; R = p;. From this
we see that qfl coql = p, @ p@m C py. By Lemma , there exists a 1 < j < n such
that p; C q;. But all non-zero prime ideals are maximal in R so we have that p; = q; and
ay = f3j. After possibly reordering, we see that

PSP =4y

Continuing by induction, we conclude that the factorisations must be the same with n =
m. [

Given a number field K, Ok is not necessarily a UFD. Indeed, if K = Q(v/—5) then
Ok = Z[v/—5] and we have that

6=2x3=(1+v=5)(1—-+V-5)

are two factorisations of 6 whose factors are pairwise non-associate (they do not differ
multiplicatively by a unit) irreducible elements. However, we do have unique factorisation
of non-zero ideals into prime ideals in Og.

Proposition 3.11. Let K be a number field. Then Ok is Noetherian.

Proof. By Theorem O is finitely generated as a Z-module. Since Z is Noetherian,
each Z-submodule of Ok is also finitely generated. In particular, any integral ideal of
Ok is a Z-submodule of Ok so the integral ideals are finitely generated. Hence O is
Noetherian. O
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Proposition 3.12. Let K be a number field of degree n. Let a < Ok be a non-zero ideal.
Then Ok /a is finite.

Proof. We first prove that a N Z # {0} and is non-empty. To this end, let « € a. Let
f(X)=X"4---+ap € Z[X] be its minimal polynomial. Clearly, ay # 0 since otherwise,
f(X) would be reducible. We then have that

ap=—(a"+ - +aa)canZ

Now choose a non-zero d € a N Z. By an isomorphism theorem, we have

Ok /(d)
a/(d)

Now, Theorem implies that O = Z" and thus Ok/(d) = (Z/(d))" which is finite.
Hence Ok /a is finite. O

= OK/Cl

Corollary 3.13. Let K be a number field. Then Ok is a Dedekind domain.

Proof. Proposition implies that Ok is Noetherian. O is integrally closed by definition
so it remains to show that every non-zero prime ideal is maximal in Og. To this end, let
p <Ok be a non-zero prime ideal. Then the quotient Ok /p is a finite integral domain. But
any finite integral domain is necessarily a field and thus p must be maximal. O

Definition 3.14. Let K be a number field and a < O. We define the norm of a to be

N(a) = |Ok/ql
Proposition 3.15. Let K be a number field and a <Ok a non-zero ideal. Let ay,. .., o, be
an integral basis for K and By, ..., 0B, a Z-basis for a. If T' is the matrix such that
B Qg
=7
Bn an

Then N(a) = |detT|.

Proof. By the structure theorem for finitely generated modules over a Euclidean domain,
we can write 3; = a;q; for all 1 < ¢ < n and some a; € Z. Then the diagonal of T consists
of the a; and the rest of the entries are zero. We have that

Ok /al = [(Z/(an) ® - B L/ (o)) (Z/(a101) © - - - B L/ (anew))|
=1Z/(a1) ©--- ©Z/(an)]

=lay...an|
= |det T
[
Corollary 3.16. Let K be a number field of degree n and o, ..., a, generators for some

ideal I <Ok as a Z-module. Then

AK/Q({ Ap,...,0p, }) = N(I)2AK
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Proof. This follows directly from Proposition and Proposition [3.15] O

Proposition 3.17. Let K be a number field of degree n and (a) < Ok a principal ideal for
some non-zero generator a € Ok . Then

N((a)) = [Nx/g(a)]
Remark. The above norm is multiplicative. The proof of this fact is omitted.

Proof. Let oy, ..., a, be an integral basis for K. Let 3; = az;. Then
AK/Q({ /Bla s 7ﬁn }) - det(Gi(axi))Q

n 2
= (H O_i(OZ)> AK
i=1
= (Nx/g(a))*Ax
The proposition then follows by comparing to the result in Corollary [3.16| O

Example 3.18. Let d be a square-free integer satisfying d = 0 (mod 3) and d # =+1
(mod 9). Let K = Q(d'/3). We claim that O = Z[d"/?]. Let § = d'/3. The minimal
polynomial of 6 over Q is f(X) = X?® — d. Since disc(f(x)) = —27d* we have

—27d2 = [OK . Z[@HQAK

where Ak is the discriminant of the number field KE| So the only primes dividing the index
Ok : Z]0]] are either 3 or a divisor of d. Let p be such a prime. Recall that the index
Ok : Z[#]] represents the number of elements in the quotient group Ok /Z[f]. Hence if p is
the number of elements of Ok /Z[f] then there must exist an element y # 0+ Z[6] such that
py = 0+ Z[#]. This is equivalent to there existing non-zero x € Z[0] such that z/p € Ok
but z/p ¢ Z[6)].
Let
r A+ B0+ Co*
z2 = — =

p p
be such an element of Ok for some A, B,C € Z. If w is a primitive cube root of unity then
the other conjugates of z = z; are given by

A+ Bub+ O
2 p
A + Bw?0 + Cwb?
z3 = p

We can then calculate the coefficients e; of the minimal polynomial of z in terms of symmetric
polynomials:

A’ +dB*+d*C®° - 3ABCd

€o

p3
3A% —3BCd
e = p—2
3A
€y = —
p

Ithe discriminant of a cubic polynomial of the form X2 + aX + b is given by —4a® — 27b?

15



where we have used the fact that 1 +w + w? = 0. Now since z € O, we must have that
€1, 62,3 € Z. First assume that p # 3. Then since e; € Z, we must have that p|A. We
can add integer multiples of 1,0, 6% to A, B, C without changing the fact that the ¢; € Z.
Hence without loss of generality, we may assume that 0 < A < B < Cp — 1. It then follows
that A = 0. Since e; € Z, we have that p?| BCd. But d is square free so we must have that
p|BC. If B = 0 then, since ey € Z we have p?|d*C?. This implies that p|C® whence C' = 0.
Conversely, if C' = 0 then p?|dB* whence B = 0. Hence in the case p # 3 we have that
z = 0 and thus z = 0. But this a contradiction.

Hence assume p = 3. We may assume, without loss of generality, that A, B,C = 0 or
+1. If A =0 then 3|BCd. But d is not divisible by 3 so 3|BC so either B = 0 or C' = 0.
Suppose that B = 0. Then 27|d?C® whence 3|C' and so C' = 0. Similarly, if C' = 0 then
B = 0. This is again a contradiction.

So, finally, assume that A = +1. Without loss of generality, suppose that A = 1. Then
BCd =1 (mod 3) and 27|(1 + B3d + C3d* — 3BCd). So B,C # 0. We have four cases:

B =C =1: In this case we have 27|(1 + d + d*> — 3d) and so (d — 1) = 0 (mod 27). But
then d —1 =0 (mod 9) which is a contradiction to the assumption that d # 1 (mod 9).

B =1,C = —1: In this case we have 27|(1+d — d* + 3d) and so d*> —4d — 1 =0 (mod 3).
But d = 1,2 (mod 3) which is a contradiction.

B = —1,C =1: In this case we have 27|(1 — d + d? + 3d) which is a contradiction to the
assumption d Z 1 (mod 9).

B = —1,C = —1: In this case we have 27|(1 — d — d* — 3d) which is again a contradiction
modulo 3.

We see that in all cases, there does not exist a prime dividing [O : Z[f]] and so Ok =
Z[0] as required.

Lemma 3.19. Let K be a number field and I a non-zero fractional ideal of Ok. Then
Il = O.

Proof. First suppose that I is an integral ideal. If I = O then, clearly, I’ = Ok and we
are done. Hence assume that [ is a proper ideal of Og. Then we can write

I:pl"'pr

for some non-zero prime ideals p; < Ok. By Proposition we know that p;p; = Or. We
then have that

rel < zexl COx < (x)p1--p, C Ok
< (2)p2- - p, Cp

= (z) Cpy---p,
= zep,p

T

It then follows that II’ = Ok and we are done for the case where [ is a non-zero integral
ideal.

Now suppose that [ is a non-zero fractional ideal. Then we may write I = (1/d).J for some
non-zero integral ideal J. From the previous case, we know that J has an inverse, say J!.
It then follows that I=' = dJ~! is an inverse for I. Indeed, IT~' = (1/d)JdJ ' = Og. O

Henceforth, given any fractional ideal I, we shall write I’ as I~ .
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Corollary 3.20. Let K be a number field. Denote by Jx the set of all non-zero fractional
tdeals of Og. Then Ji is an abelian group under multiplication of ideals.

Definition 3.21. Let K be a number field and let Px be the (normal) subgroup of Iy
containing all principal fractional ideals of O. Then we define the group Cl(Ok) = I/ Pk
to be the ideal class group of K. We call the cardinality of I /P the class number of
K and we denote it by hg.

We will soon prove that the class group is finite.

Proposition 3.22. Let R be a Dedekind domain. Then R is a unique factorisation domain
if and only if it s a principal ideal domain.

Proof. We know from elementary ring theory that any PID is necessarily a UFD.

Conversely, assume that R is a UFD. We first claim that all prime ideals of R are
principal. To this end, let p < R be a prime ideal. If p is the zero ideal then it is clearly
principal so we may assume that p is non-zero. Let = € p be non-zero. Since R is a UFD,
we can write x as a product of primes z = p; - - - p, for some p; € R. Now p is prime which
implies that at least one of the p; € p. Let p = p;. Since R is Dedekind, the ideal (p) < R is
maximal which means we must have p = (p). This proves the claim.

Now let I < R be an arbitrary ideal of R. Given = € I, let [(x) denote the number of
primes in the prime decomposition of z. Choose x € I such that [(z) is minimal. We claim
that = is a generator of I. Indeed, suppose that y € I such that x does not divide y. Let z
be the greatest common divisor of x and y. Clearly, I(z) < I(z). We may write x = za and
y = zb for some coprime a,b. We now claim that (a,b) = R. Indeed, consider the collection

{J<R|JC(a,b)}

Since R is Noetherian, this collection of ideals contains a maximal element, say m. Since any
maximal ideal is a prime ideal, there must exist a prime p € R such that m = (p) C (a,b).
But then p divides both a and b which contradicts the fact that they are coprime. Hence
R = (a,b). Thus 1 € (a,b) and there exist elements x¢,yo € R such that zoa + yob = 1.
This implies that z = zox + yoy, contradicting the fact that {(z) < [(x). We must therefore
have that = divides all y € I and we are done. O]

Proposition 3.23. Let K be a number field. Then Ok is a principal ideal domain if and
only if Cl(Ok) ={0}.

Proof. Suppose that Ok is a principal ideal domain and let I be a fractional ideal of Ok.
Then we can write I = (1/d)J for some d € O and integral ideal J < Ok. Since O is a
PID we have that J = (a) for some a € Okg. Then J = (a/d) and is thus principal.
Conversely, suppose that Cl(Og) = {0}. Then every fractional ideal of Ok is principal.
In particular, every integral ideal of O is principal and we are done. O

It follows that, given a number field K, Ok is a unique factorisation domain if and only
if it is a principal ideal domain. This is in turn equivalent to the ideal class group being
trivial. We thus see that the class group is a measure of the failure of a ring of integers to
be a unique factorisation domain.

Theorem 3.24 (Dedekind’s Theorem). Let K be a number field and suppose that K = Q(«)
for some a € Og. Suppose furthermore that there exists a prime p that does not divide
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[Ok : Z]a]]. Let f(X) be the minimal polynomial of o over Q and let f(X) € F,[X] be its
reduction modulo p. Suppose that

f=at" g7
is the factorisation of f into irreducibles in F,[X]. For each 1 <1i <, let h; be such that
1. h; = g; (mod p)
2. pi = (p, hi(a)) Ok
Then
1. p1,...,p, are the distinct prime ideals of Ok that contain p
2. pOg = pi' ---pSr is the prime ideal factorisation in Ok
3. [Ok/pi : Fp] = deg(g:)

Example 3.25. Consider K = Q(v/=5). Since —5 = 3 (mod 4) we have Ox = Z[/=5].
Then neither 2 nor 3 divide [Of : Z[v/—5] so we can apply Dedekind’s Theorem to investigate
how 20k and 30k factorise. X2 + 5 is the minimal polynomial of v/—5 over Q. We first
consider p = 2. We have

X?+5=X*+1 (mod 2)
= (X +1)?

Writing p = (2,1 + v/—5)Ox it follows that 20k = p?. Now for p = 3 we have
X?4+5=X?+2 (mod 3) =(X+1)(X-1)
Writing q = (3,1 ++v/—5)Ok and q = (3,1 — v/—5)Og we have that 30k = qq.
Now, by Dedekind’s Theorem, we have that N(p) = 2 and N(q) = N(q). Indeed, in the

p = 2 case for example, we have [Ok /p : Fy] = deg(X +1) = 1. It then follows that p, q, q are
all distinct prime ideals. We have the following calculation for the norm of (1 + v/—5)Ok:

N((1+ v=5)) = | Ngy=50(l + V5)| = 6
Furthermore, N(pq) = N(p)N(q). Observe that
14+ +v=5=3(1+v=5)—2(1++v-5) € pq
It then follows that (14++/—5)Of C pq. But these two ideals have the same norm so we must

have that (1++/—5)Ok = pq. By a similar argumentation, we have that (1—+/—5)Ok = pq.
We therefore have that the non-unique factorisation of elements of Ok

2.3=6=(1++v-5)(1 —v-5)
becomes a unique factorisation of ideals of O

pqq = 60k = (pq)(pq)
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4 Valuation Rings and Localisation

Definition 4.1. Let R be an integral domain and K = Frac(R). A valuation of R (or K)
is a map

v:K\{0} —>7Z
such that, for all a,b € K,
1. v(ab) = v(a) + v(b)
2. v(a+b) > v(a) + v(b) with equality if and only if v(a) # v(b)

Example 4.2. Let R = Z and fix a prime p in R. If a/b € Q is non-zero we can always
write a/b = p®c/d for some ¢, d coprime to p. We define the p-adic valuation to be

vp(a/b) = a
It is readily verified that this is a valuation of Z.
Proposition 4.3. Let K be a field and v a non-trivial valuation of K. Then

1. The set given by
O, ={zec K\{0}|v(x) 20}U{0}
1s a ring called the valuation ring of K.
2. Frac(Ok) = K.

3. O, is a local rind’] with mazimal ideal
m, ={ze K\{0}|v(x)>0}u{0}

4. my, s a principal ideal whose generator is any element whose valuation is minimal -
such a generator is called a uniformiser for O,.

5. Fvery non-zero ideal I < O, is a power of m. In particular, O, is a principal ideal
domain.

6. O, is a Fuclidean domain with Fuclidean function v.

Proof.

Part 1: We first show that O, contains the identities. It clearly contains 0 by definition.
We have v(1) = v(1-1) = v(1) + v(1) = 2v(1) so necessarily v(1) = 0 and thus 1 € O,.
Furthermore, v(—1) + v(—1) = v(—=1-—1) = v(1) = 0 so also v(—1) =0 and so —1 € O, -
this guarantees the existence of additive inverses.

Zrecall that a local ring is one that has a unique maximal ideal (sometimes the Noetherian property is
also required but we shall be explicit when this is the case)
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Now suppose a,b € O,. Then v(ab) = v(a) +v(b) > 0 so ab € O,. Finally, v(a —b) >
v(a) + v(=b) =v(a) +v(—=1) +v(b) > 0soa—0be O,. Hence O, is a ring.

Part 2: It suffices to prove that for any x € K then either z € Ok or 27! € Ok. But this is
clear since either v(z) > 0 or v(z) < 0. Indeed, in the latter case we have v(1) = v(zz~!) =
v(z) +v(z™") and so v(z™') = —v(z) whence v(z™t) > 0.

Part 3: It is clear that m, is an ideal of O,. To show that it is the unique maximal ideal,
it suffices to show that any element in O,\m, is a unit. Let = be such an element. Then
v(z) = 0. We have v(z™!) = —v(z) and thus v(z™') = 0 whence 27! € O,\m, as required.
Part 4: Let x € m, be of minimal valuation. We claim that m, = (z). Indeed, let y € m,,.
We need to show that y = ra for some r € O,. This is equivalent to showing that yz=! = r

for some r € O,. We have that

v(yz ™) =v(y) + o) = v(y) — v(z)

Now, by assumption, v(y) > v(x) and so v(y) — v(x) > 0 which means that yz=* € O, as
required.

Part 5: Let 7 be a uniformiser for O,. Since v is a group homomorphism between K* and
Z, it follows that im(v) = v(mw)Z. Hence v(m) divides v(r) for all r € O,. Let r € m,, be non-
zero. Then v(r) = v(m)k for some positive k € Z. It follows that v(7=*r) = kv(r)+v(r) = 0.
Hence 7= %r is a unit of O and thus r = 7*u for some unit u € O,.

Now let I <O, be a non-zero ideal. By a similar argument for m,, there exists an ro €
such that I = (rg). But we can always write 1y = m*u for some integer k and unit u € Of.
Hence I = (rg) = (7*u) = (7*) = (7)* = m*. It then follows that O, is a principal ideal
domain.

Part 6: We claim that N : O, — Z>q given by N(0) = 0 and N(r) = v(r) for non-zero
r € O, is a Euclidean function for O,,.
We need to show that for all non-zero a,b € O,, there exists ¢, r € O, such that a = bg+r
and either r = 0 or N(r) < N(b).
Suppose first that v(a) > v(b). Then v(a/b) = v(a) —v(b) > 0so ¢ = a/b € O, and
r = 0. Now suppose that v(a) < v(b). In this case, we can just let ¢ =0 and r = a.
]

Example 4.4. Consider the p-adic valuation v, on Q as defined before. Then
O, = {p"% ‘ n>0,a,b € Z and a, b coprime top}

Example 4.5. Let K be a nunber field and fix a prime ideal p < Og. Let f € K*. Then
we can write

(F) =P

for some prime ideals P; <Ok and integers e;. We can define the p-adic valuation of f to be
the power of p in the prime ideal factorisation of (f).

Definition 4.6. Let R be a ring and S C R a subset. We say that S is multiplicative if
1 €S and s,t € S implies that st € S.

Example 4.7. If R is an integral domain then R\ {0} is a multiplicative subset of R.
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Example 4.8. If R is an integral domain and P < R is a prime ideal then S = R\P is a
multiplicative subset of R.

Definition 4.9. Let R be a ring and S C R a multiplicative subset. Define an equivalence
relation on S x R where (s,7r) ~ (s',a) if and only if there exists s” € S such that s”(as’ —
a’'s) = 0. We define the localisation (or ring of fractions)of R with respect to S, denoted
ST'R to be the set of all equivalence classes of this relation. We denote the equivalence
class of (s,a) by a/s. This set forms a ring with addition given by

a d as’+ds

s s Ss

and multiplication given by

a da ad
s s s
1/1 is the multiplicative identity and 0/1 is the additive identity.

Example 4.10. Let R be an integral domain and S = {0} the multiplcative subset of R
consisting of only zero. Then S™'R = Frac(R)

Example 4.11. Let R be an integral domain and r € R. Consider theset S = {1,r,7%,...}.
Then S is a multiplicative subset of R and S™!R is called the localisation of R at the element
r.

Example 4.12. Let R be an integral domain and p < R a prime ideal. Then S = R\p
is multiplicative and S™'R is called the localisation of R at the prime ideal p. This is
sometimes denoted R,.

Here we give a survey of some interesting results pertaining to DVRs and localisation.

Proposition 4.13. Let R be a ring and S C R a multiplicative subset. If I < R is an ideal
then ST ={a/s|a€l,s€ S} is an ideal of ST'R.

Proposition 4.14. Let R be a ring and S C R a multiplicative subset. Then there is a
one-to-one correspondence between the prime ideals QQ < R that are disjoint from S and the
prime ideals of ST'R given by Q — S71Q.

Example 4.15. Let R be an integral domain and p a prime ideal. Let R, be the corre-
sponding localisation. Then there is a one-to-one correspondence between the prime ideals
@ such that @) C p and the prime ideals of R,.

Theorem 4.16. Let R be an integrally closed Noetherian local integral domain that is not
a field. Let m < R be its unique maximal ideal. Then R is a discrete valuation ring.

Corollary 4.17. Let R be a Noetherian integral domain in which every non-zero prime ideal
1s maximal. Then R is a Dedekind domain if and only if every localisation of R is a discrete
valuation ring.

Lemma 4.18. Let R be a Noetherian integral domain. Then R is integrally closed if and
only if every localisation of R is integrally closed.

Proposition 4.19. let R be a Dedekind domain and I < R a non-zero ideal. Let I =
Pt P be its unique factorisation into prime ideals. Then

R/I=(R/P)®---© (R/P")

Furthermore, R/P' =~ Rp/(PR,)" is a discrete valuation ring.
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5 Geometry of Numbers

Definition 5.1. Let V be an n-dimensional vector space over R. We say that a subset
X CV is compact if it is both closed and bounded.

Definition 5.2. Let V' be an n-dimensional vector space over R. Let A C V be a subgroup.
We say that V is discrete if for every compact subset X C V' we have | X N A] < 0.

Theorem 5.3. Let V' be an n-dimensional vector space over R. Let A C V' be a subgroup.
Then the following are equivalent:

1. A is discrete

2. N is a finitely generated Z-module and some generating set is linearly independent over

R.

3. N is a finitely generated Z-module and every Z-basis of A is linearly independent over

R.

Proof. We shall prove the theorem in the order (1) = (2) = (3) = (1).

(1) = (2): Assume that A is discrete. Let ey,...,e, € A be linearly independent over R
with » maximal. Since V' is n-dimensional, we have r < n. Let

P:{iaiei a; € [0,1]}

i=1
be the parallelotope generated by the e;. Cleary, P is closed and bounded and is thus
compact. Since A is discrete, P N A is finite.

Fix some x € A. Since r is maximal, there exist some b; € R such that = = Z:Zl be;.
Given any real number ¢ € R, we can always write ¢ = [c] 4+ {¢} where [c] is its integral part
and {c} is its fractional part. It follows that for all i we have b; = [b;] + a; where a; = {b;} €
0,1). Write A = >, [bi]le; and p = Y _, a;e; so that x = A+ p. Since A is a group, we
have that A € A. Furthermore, it is clear that p € P. Now,p=2—X € A andsop € PNA.
It thus follows that A is finitely generated as a Z-module by {ey,...,e, JU(PNA) = PNA.

Now let m = [PNAJ. Let j € Z and define x; = jo— >, [jbi]e;. Clearly, z; € A. Also,
z; =Y (jb; — [jbi])e; and so z; € P. It thus follows that x; € A N P. By the pigeonhole
principle, we must have that z; = x; for some j # k and both j, k between 1 and m + 1.
This means that jb; and kb; have the same fractional part. Hence

(7 — k)b; = [jbi] — [kb;] € Z

Hence b; = B;/m! for some B; € Z. Indeed, 1 < j — k < m so j — k must divide m!. We
may thus write

s T BZ

r = E biei = E — 6
: — )|
i=1 =1

whence A is a finitely generated Z-submodule of the Z-module, say M, generated by the

By the structure theorem for finitely generated modules over a Euclidean domain, there
exist a Z-basis { g1,...,¢, } for M and integers ns,...,n, such that nygy,...,n.g. is a Z-

basis for A (after possibly removing the n;g; that are zero). Now, the change of basis matrix
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between the e;/m! and the g; is invertible and, since the e; are linearly independent over
R, we must have that the g; are linearly independent over R whence the n;g; are linearly
independent over R.

(2) = (3): Assume that A is a finitely generated Z-module and that some generating set
is linearly independent over R. Let g4, ..., g, be such a linearly independent generating set.
Trivially, the g; are linearly independent over Z and so form a Z-basis for A.

Let hq,...,hs be another Z-basis for A. Clearly we must have that » = s. We can then
write

gi = Z mijhj
j=1

for some m;; € Z. This then implies that the h; must be linearly independent over R.

(3) = (1): Suppose that A is a finitely generated Z-module and every Z-basis of A is
linearly independent over R. Let eq,..., e, be a Z-basis for A. By assumption, the e; are
linearly independent over R so we may extend the e; to a R basis of V', say ej,...,e,. Let
fi,-. ., fn denote the standard basis of V. Then there is a linear map

L:V -V
e — fi

This is clearly continuous with continuous inverse and is thus a homeomorphism of ths
standard topology on V. L thus preserves compactness. If X C V' is compact then L(X) C
V' is compact aand there must exist a ball B C V centered at 0 which contains L(X) and is
closed and bounded. Let such a ball have radius R. It is easy to see that L(A) N B is finite.
Indeed, L(A) is the Z-span of fi,..., f. and thus

=1 =1

But there are only finitely many such integer vectors so L(A) N B must be finite. Applying
the inverse of L we see that AN L~!(B) is finite. Now, X C L™!(B) so AN X is finite. Since
X was an arbitrary compact subset of V', A must be discrete.

]

Definition 5.4. Let V be an n-dimensional vector space over R and A C V' a subgroup.
We say that A is a lattice if it is discrete and has rank n.

Definition 5.5. Let V' be an n-dimensional vector space over R and A C V a lattice. If
€1,...,6e, 18 a Z-basis for A, we define the e-parallelotopeﬂ of A to be the set

E:{iaiei a; € [0,1]}

i=1
Its volume, denoted vol(E) is given by the absolute value of the determinant of the matrix
whose columns are the e;.

Lemma 5.6. Let V be an n-dimensional vector space over R and A C V' a lattice. Let
€1y...,e, and fi,..., f, be two Z-bases for A. Then the volume of the e-parallelotope is
equal to the volume of the f-parallelotope.

3note: this is not conventional notation!
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Proof. Dnote by E and F' the e-parallelotope and f-parallelotope respectively. We may
write f; = Y ,_, njgey, for some integers njj,. Let N = (nj),) be the matrix whose entries are
the nj;. It follows that

vol(F') = |det(N)| vol(E)
Clearly, N~! has Z entries so det(N) is a unit in Z (i.e +1). Hence vol(F) = vol(F). O

Definition 5.7. Let V' be an n-dimensional vector space over R and A C V a lattice. We
define the covolume of A, denoted covol(A), to be the volume of the parallelotope given by
any Z-basis of A.

Definition 5.8. Let V' be a finite dimensional vector space over R and S C V' a subset. We
say that S is convex if for all z,y € S we have tz + (1 —t)y € S for all t € [0, 1]]

Theorem 5.9 (Minkowski’s Convex Body Theorem). Let V' be an n-dimensional vector
space over R, A CV a lattice and S CV a measumblﬂ subset. Then

1. If vol(S) > covol(A) then there exists x,y € S such that 0 #x —y € A.

2. If vol(S) > 2" covol(A) and S is symmetri{’| and convex then there exists a non-zero
point in S N A.

3. If vol(S) > 2" covol(A) and S is symmetric, conver and compact then there exists a
non-zero point in S N A.

Proof.

Part 1: Fix a Z-basis of A and let P be the parallelotope defined by it. We can think of A
as acting on V' by translation. Then P is a fundamental domain for this action. In other
words, V = xea Pr where Py = A\ + Pﬂ Observe that P, N P, is non-zero at most along
some subset of the boundaries of Py and P,. Furthemore, set Sy = XA +.5. We then have
that

S=J(rnS) = vol(S) =) vol(ANS)

AEA AEA

Through a translation, we have that P\NS = PN.S_y and so vol(S) = >, ., vol(PNS_y).
Now assume that all the subsets P N .S_, are disjoint. Then they are disjoint subsets of
P whence ), _, vol(P N S_y) < vol(P). But, by assumption, vol(S) > vol(P) which is a
contradiction. Hence there exists A\, u € A with A # p such that

@£ (PNS_\)N(PNS_,)
— PN(S.ANS.,)

In particular, S_y N'S_, # @ so there exists z,y € S such that + — A = y — p. Then
r—y=A—pc€ANand x #y.
Part 2: Let S" = (1/2)S. Then vol(S’) = 27" vol(S) > covol(A). Hence by Part 1, there

exists, y,z € " such that 0 # y — z € A. Then 2z,2z € S so —2z € S by symmetry. Let
x =1y — z. Then

T=y—2= 1(2y —2z) = 1(2y) + 1(—22)
2 2 2

4geometrically, this means that, given any two points in S, the line joining them is fully contained in S

Sinterpret this is any subset of V that has an intuitive volume

breS = —ze€s

“consider A = Z2 C R? with the ¢; the standard basis
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Since S is convex, it follows that z € S.

Part 3: Let S,, = (1 + 1/m)S for all positive integers m. By Part 2, there exists an
Tm € AUS,,. Note that the sequence { z,, } C ANS;. But A is a lattice and, in particular,
is discrete. S is clearly compact so A NSy is finite. Hence z,, = x for infinitely many m.
Then z € N,,S,,. But each S,, is compact whence x € N,,S,, = S and we are done.

]

We shall use these results to show that the class group of a number field is finite. Let K
be a number field of degree n. Recall that there exist n distinct embeddings of K into an
algebraic closure of C. It is not hard to see that n = r 4+ 2s where r is the number of real
embeddings and 2s is the number of complex embeddings.

Definition 5.10. Let K be a number field of degree n and let o4, ..., o, be the distinct em-

beddings of K into an algebraic closure of Q. We can label them so that o1,...,0.,...,04,..., 09

is the list of embeddings where r is the number of real embeddings and s is the number
of complex conjugate pairs of embeddings. Furthermore, choose the ordering of these em-
beddings such that, for r < j < ry, 0,4, is the complex conjugate of o;. Note that we can
identify C with R? via the mapping z — (Re z,Im 2). We define the canonical embedding
of K to be the mapping K — R" given by

(01,...,00,Reo, 1, Imo,yq,...,Reo, s, Imo, )

Lemma 5.11. Let V' be an n-dimensional vector space over R and A C 'V a lattice. Suppose
that M C A is a subgroup of index m. Then M is a lattice and covol(M) = m covol(A).

Proof. By the stucture theorem for finitely generated modules over a Euclidean domain,
there exists a Z-basis ey, ...,e, for A and integers rq,...,r, such that riey,...,re, is a
Z-basis for M. Let X C V be compact. Then M N X C AN X. But the latter is finite so
M must be discrete and is thus a lattice.

Let [ey, ..., e,] denote the matrix with columns given by the e;. Then

covol(M) = |det[rie, ... ,mpen]| = |r1 - ol detler, ... e,] = Hri covol(A)
i=1
It is easy to see that m =[], r;. Indeed, m is the order of the quotient group A/M. But
this is isomorphic to Z/(r1) & - - - & Z/(r,,) which has rq - - - r,, elements. O

Proposition 5.12. Let K be a number of degree n and discriminant Ax. Let oy, ..., 0, be
the n distinct emebddings of K into an algebraic closure of Q such that n = r+2s and let o
denote the canonical embedding of K into R"™. Furthermore, let I <Ok be an integral ideal.
Then

1. 0(Ok) is a lattice in R™ and covol(o(Of)) = 27| Ak |2
2. o(I) is a lattice in R™ and covol(o(I)) = N(I)27%|Ax|/2.

Proof. Part 1: Let xy,...,2, be a Z-basis of Og. Then covol(c(Ok)) is given by the
absolute value of

o1(z1) -+ o.(r1) Reopi(xy) Imoi(xr) -+ Reopios(xr) Imonyas(z)
o1(xe) -+ on(xe) Reopy1(za) Imoyiq(za) -+ Reopios(we) Imo,ios(xs)
o1(zn) -+ or(zn) Reopyi(x,) Imorii(x,) -+ Reopps(z,) Imopis(zn)
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Omitting writing everything except the 0,1 columns, we have

%(Urﬂ(l’l) + Orisy1(21)) 2%(07“+1<x1) — Orist1(21))
+ covol(o(Ok)) = : :
%(UrJrl(xn) + Orpsr1(Tn)) %(UTH (Tn) = Orysy1(Tn))

] o o ora(@) Forpsa () ora(21) — Orpsta(an)
] e

Or41 (xn) + UrJrerl(xn) Ur+1(zn) - UrJrerl(xn)

Adding the column with the differences to the column with the sums gives

1N /1\° o 20040(11)  orpa (1) — Opgeri (1)
NG

+ covol(a(Ox)) = (5

20, 11(zn) 0ri1(Tn) — Orpsy1(Tn)

1\* Ur+1(331) orp1(m1) — 0r+s+1($1)

0-7"+1<xn) O'rJrl(xn) - O-r+s+1<xn)

Subtracting the column whose entries have a single term from the column with the differences
gives

] gm.(xl) —o-T+s:+1(x1>
@) | rria@n) —rpern(n)
(] e

Or+1 (xn) Or4s+1 (-'L‘n>

But recall from Proposition that such a determinant is the square root of |Ak|. Thus

_ 2_S’AK’1/2

covol(o(Ok)) = ‘(_1)5 (%)s |Ag|M?

Part 2: Recall that an integral ideal I <O has index N(I) in Ok. Hence by Lemma [5.11]
o(I) is a lattice. Furthermore,

covol(a(I)) = N(I) covol(a(Ok)) = N(I1)27%|Ag |/

]

Definition 5.13. Let K be a number field of degree n such that n = r + 2s where r is
the number of real embeddings and s is the number of complex conjugate pairs of complex
embeddings of K into an algebraic closure of Q. We define the Minkowski constant cy

of K to be
4\° n!
T (_> oAl
T n

where Ay is the discriminant of K.
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Lemma 5.14. Lett > 0 € R and consider the set

Zmuzzim gt}

B(r,s); = { (y,2) e R" x C?

Then
m\ s t"
(B(r,s)) = 2" (—) =
vol(B(r, s);) 5)
Proof. We shall prove the lemma by induction on r and s. First suppose that » = 1 and
s = 0. Then B(1,0); = [—t,t]. The lemma clearly holds in this case. Next suppose that

r=0and s = 1. Then B(0, 1) is the disc of radius £/2 in the complex plane and the lemma
also holds in this case.

Now assume that the formula holds for B(r, s);. We shall prove that it holds for B(r +
1, S)t‘

B(r 41, s); is the region of R x R" x C* defined by

] +Z|yi| +2Z|Zi| <t
for some y € R. This is equivalent to

Z!yi\+22|zi| <t—|y|

For |y| > ¢, B; is empty so we have

vol(B(r+1,s),) = [ B(r,5)i—y dy
—t
:2/t2’" (E> =y,
0 2 n!
— 2r+1 (E)sl/t(t_y)n dy
¢ ¢
_ or+l E Si 1 AN )
=2 (2) n!/o {n+1(t v) ]0
_ or+l1 E s tn
=2 (2) (n+1)!

as desired.
We now prove that that the formula holds for B(r, s+1);. This is the region of R" xC*xC

defined by

Dol +2) a2 <t
for some z € C. This is equivalent to

Z|yz| +222i <t —2z|
and hence B(r,s + 1); is empty when |z| > t/2. We thus have

vol(B(r,s +1);) = / B(r,s)i—9)2 do

|2 <t/2
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where do is the infinitesimal area element of C. Swapping to polar coordinates, we have
z = pexp(if) and do = dpdf. Hence

m\* (t —2p)"
1 27" —F— dpdb
vol(B(r,s + 1 /po/eop 2) o P
t/2
=2 (§> nl /pzo plt = 2p)" dp

Applying integration by parts yields

t/2 tn+2
t— 20V dp =
/pzo plt = 2p)" dp An + 1)(n +2)

and we are done. O

Proposition 5.15 (Minkowski bound). Let K be a number field of degree m such that
n = r + 2s where v is the number of real embeddings and s is the number of complex
conjugate pairs of complex embeddings of K into an algebraic closure of Q. If I <Ok 1is an
integral ideal then there exists non-zero x € I such that

| Ngjo(@)| < cxN(I)
where ck s the Minkowski constant of K.

Proof. Let t >0 € R and let

B(r,s); = { (y,2) e R" x C*

Sl +2 X lel <t

Clearly, B(r,s); is compact and symmetric. We first claim that it is also convex. To this
end, let (a,b), (c,d) € B(r,s);. We need to show that my(a,b) + ma(c,d) € B(r,s); for all
my > 0, my < 1 such that m; + my = 1. We have

2 (a,5) + ma(c, d) = (maa + mac, mab + mad)

and so

Z |myia; + mac;| + 22 |m1b; + mad;| = Z |mia; + mac;| + 2 Z |m1b; + mad,;|

7

< Zmlm + malei| + 2Zm1\b | + o dy]

=m <Z|ai| +2) |bi) +my <Z|Ci| +22|di|>
§m1t—i—zmgt:t Z Z l

and so B(r, s); is convex.
Now choose ¢ such that vol(B(r, s);) = 2" covol(c(])). Then

tn
9r (—) — "N (1)275| A |1/2
) —rvmeas
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Rearranging and using the fact that n = r 4+ 2s we have
4 S
"= (-) n!|Ag|Y2N (1)
T

Now by Minkowski’s Convex Body Theorem, there exists non-zero x € I such that o(x) =
(Y1, -+ Yr, 21, 25) € B(r, s);. Note that

Nio(@) = [[w ][ =%
i=1  j=1

By the arithmetic mean-geometric mean inequality we have

n 1
| Ngjg(z)|V" < - (E |yl +2 E \%’\)
i j

By the choice of t we then have that

n

t
|Nio(z)l < = = exN(I)
as desired. ]

Corollary 5.16. Let K be a number field of degree n = r + 2s. Then every element of
Cl(Ok) has an integral ideal representative J < O such that N(J) < ck.

Proof. Given any equivalence class in C1(Of), choose a fractional ideal, say M. Given any
non-zero y € M we have yO C M and so yM ' C Og. Observe that [yM '] = [M ] as
multiplying by an element of K won’t affect the principality of the fractional ideal M~!. We
thus may assume, without loss of generality, that M ~! is an integral ideal. By Proposition
5.15, we may choose a non-zero x € M~! such that

| Ngja(a)| < ek N(MT)
Multiplying through by N (M) we get
IN(xM)| < ek

Clearly, M is in the same equivalence class as M and aM C M~'M C Ok and is thus
integral as required. O]

Lemma 5.17. Let R be a Dedekind domain and Iy, I < R integral ideals. Then I, divides
Is if and only of Iy C I.

Proof. Let p <O be prime. Let np(I) denote the exponent of p in the prime factorisation
of p. Then [y divides I if and only if n,(f;) < ny(I3) for all prime ideals p. Now we have
I, C I, if and only if I,I;* C Ok. But this is equivalent to ny(Iz) — ny(I1) > 0 and we are
done. O

Corollary 5.18. Let K be a number field. Then Cl(Ok) is finite.
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Proof. By the existence of the Minkowski bound, it suffices to show that, given any positive
integer M, there exist only finitely many integral ideals whose norm is M.

We first claim that any integral ideal with norm M necessarily contains M. To this
end, let I < Ok be an integral ideal such that N(I) = M. Then, by definition, we have
|Ok/I| = M. But it is easy to see that the characteristic of a finite ring must divide its
order. Hence we must have that M =0 (mod I) and thus M € I.

Now, if M € I then (M) C I. By Lemma I divides (M). But, by unique
factorisation, (M) has only finitely many divisors. It thus follows that there can exist only
finitely many ideals containing M and thus there can only exist finitely many ideals with
norm M. O

Remark. This result doesn’t necessarily hold for general Dedekind domains. Indeed, a
counter example is the complex algebraic curves of positive genus.

Example 5.19. Consider the number field K = Q(v/—13). —13 = 3 (mod 4) and so
Ok = Z[v—13]. It follows that Ax = —4 - 13. Now, the degree of K over Q is n = 2 and
there are clearly only complex embeddings so s = 1. We may thus calculate a bound on the
Minkowski constant:

4\ 2! 413 4413 2452 2-7.5
Ck—<;>§(2\/ﬁ)— \7/T—< Vi3 _ \/_< =

5
3 3 3

Hence every equivalence class in Ok contains an integral ideal representative I satisfying
N(I) < 4. Since every integral ideal admits a unique factorisation into prime ideals, this
means that the class group is generated by classes of prime ideals [p] such that N(p) < 4.

We now factorise the ideals generated by the rational primes less than or equal to 4 (i.e
2 and 3) using Dedekind’s Theorem. First note that [O : Z[v/—13] = 1 and so we may
apply Dedekind’s Theorem to 2 and 3. The minimal polynomial of v/—13 over Q is X2 +13.
Considering this modulo 2 we have

X?+13=X?+1 (mod 2)
= (X +1)?

and so pOg = p? where p = (2,1 +/—13)Ox and N(p) = 2.
Considering the minimal polynomial modulo 3 we have

X?+13=X?+1 (mod 3)

But this polynomial is irreducible in F3[X] so 30k is prime and has norm 9.

It follows that the class group is generated by the class [p]. Note that since p? = 20
which is principal, [p] must have order either 1 or 2.

Suppose that the order of [p] is order 1. Then we would be able to write p = (z +
yv/—13)Of for some x,y € Z. Passing to the norms we have 2 = | Ng/g(z + yv/—13)| =
2? + 13y2. But this equation clearly has no solutions in integers so [p] must have order 2.
Therefore, C1(Ok) = Fs.

We can use this to find solutions to the equation y? = 23 — 13 in Z. Indeed, suppose
that (x,y) is a solution to this equation. First assume that z is even. Then y* = 3 (mod 4)
which is a contradiction. Hence x must be odd. Furthermore, x and y are coprime. Indeed,
we may rewrite the equation as y? — 23 = —13 to see that the only possible prime dividing
both y and z is 13. But then 13? would divide the left hand side of the original equation
and not the right hand side. Thus x and y are coprime.
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We now factor the equation in Ok to get

(y+v-13)(y — vV—13) = 2*

Suppose that a prime ideal p divides both ideals (y +v/—13)Ok and (y — v/—13)Ok.
Then p divides (x)3 and, in particular, (z). But x is odd so p cannot divide 20f. Observe
also that p divides 2yOg whence p divides yOg. But this is a contradiction to the fact that
x and y are coprime so there cannot exist a prime ideal dividing both (y + v/—13)Ok and
(y — v/—13)Ok. Hence by unique factorisation of ideals, there exists ideals a, b < Ok such
that

(y+V=13)0k = a*, (y—V-13)0x = b’
Now Cl(Og) = Fy and so [a]> = [6]®> = 1 whence a and b are principal. In particular,
(y +vV—13)O = (a+ bvV/—13)*0Ox

for some a,b € Z. Hence, y + v/—13 = (a + by/—13)3u for some unit u € O}. Recall that a
unit in Ok must have norm +1. Suppose that ¢+ dv/—13 is a unit for some ¢, d € Z. Then
c? +13d? = 1. This is only possible if ¢ = 1 and d = 0. Hence the only units in Ok are
+1. Hence

y+v—13 = (a + bv/—13)?
Expanding the right hand side out (with the binomial theorem or otherwise) gives
y+vV—13 = a® + 3a®bv/—13 — 3 - 13ab* — 1303/ —13
Comparing coefficients of \/—13 yields
1 = 3a®b — 13b* = b(3a* — 13b?)

whence b = £1. If b = 1 then 1 = 3a® — 13 which is not possible. Hence b = —1 which gives
1 = —3a® + 13 whence a = £2. This then gives

y=a®—39ab’ = +8 F 78

and thus y = £70. Substituting ths into the original equation gives 70? = 2* — 13. Simpli-
fying gives us 2® = 4913. Noteﬁ that 4913 = 173 and so # = 17. Thus, the complete list of
solutions to y* = a3 — 13 is (17, 470).

Example 5.20. Consider the number field Q(1/19). Then 19 = 3 (mod 4) and so Og =
Z[v19]. We thus have that Ax =4 -19. Note that the degree of the number field is 2 with
only one real embedding. We can thus calculate the Minkowski constant

4\* nl 2l
Cx = <—> LA =2 V19 = V19 < 5
T) n" 2

Hence Cl(Of) is generated by classes of prime ideals of norm at most 4. We now factorise
the ideals generated by the rational primes up to 4, namely 20k and 3Og. The minimal
polynomial of v/19 over Q is X? — 19. Considering this modulo 2 we have

X?-19=X*+1 (mod 2)
= (X +1)(X+1)

80h God, don’t expect me to do this in the exam *flashbacks from elementary number theory™*

31



and so 20k = p* where p = (2,1 +1/19)Ok is prime. Furthermore, [Ok/p : Fo] = 1 and so
N(p) = 2.
Now consider the minimal polynomial modulo 3:

X?—19=X*+2 (mod 3)
=(X+1)(X-1)

and so 30k = ¢1q2 where q; and gy are prime and N(q;) = N(q2) = 3. We claim that
both ¢, and g, are principal. By Dedekind’s Theorem, we can write q; = (3,1 4 v/19)Ox.
To show that q; is principal, it suffices to show that it contains a principal ideal whose
norm equals that of q;. It is easy to see that 4 ++/19 € q;. Then N((4 + V19)Ok) =
| N4 +V19)| = |42 — \/E2| = 3 as desired. Hence ¢ is principal. A similar argument
shows that g, is also principal. Hence Cl(Ok) is generated by [p]. Now, [p] must have order
either 1 or 2 since p? is principal. Suppose that p has order 1. This is equivalent to p being
principal. We claim that pgq; is principal for some i. Since q; is principal, this will imply
that p is principal. It is easy to seeﬂ that 5 — v/19 € pqy. So

N(par) = N(p)N(a1) =2-3 =6 = | Niyo(5 — V19)| = N((5 - V19)Ox)

and so pq; = (5—v/19)Of whence the product is principal. Hence p is principal. This means
that [p] has order 1 in Cl(Of) whence the class group is trivial. Thus Of is a principal
ideal domain and, in particular, a unique factorisation domain.

Theorem 5.21 (Hermite-Minkowski). Let K be a number field of degree n > 2 such that
n =1+ 2s. Then

w3\
Ag| > = — 1
()
Proof. Let [I] € Cl(Ok) be an ideal class. By Corollary there exists an integral
representative of [I], say I, such that N(I) < ¢x. But 1 < N(I) so ¢k > 1. This implies
that

n

| A2 > (Z)S n

4/ nl
and so
T 2s n2n
Az (7) p
Since /4 < 1 and n > 2s we have
m\" n"
Al 2 () =

Now,

_7r2_7r 3
= T3\

9he product contains 6 and it also contains —(1 + /19)
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Using the binomial theorem, we obtain the estimate

2n
Api1 T 1 2n 3
— |1+ = 1 _
ap, 4( +n) 4( - ) 4

3r\"? 7« /3x\""
(n = 2 \ 7 3\

Theorem 5.22 (Hermite). Let n > 1 be a natural number. Then there are only finitely
many number fields K such that |Ak| < n.

And so

]

Proof. Let K be a number field and fix a natural number N € N. Suppose that |[Ag| = N
By the Hermite-Minkowski Thereom, there exists an upper bound on the degree of n = r+2s,
depending only on N. Hence we may assume that N and n are both fixed natural numbers.
We need to show that there are only finitely many number fields K such that [Ag| = N
and [K : Q] =n.

Let A = 0(Ok) be the lattice equal to the image of the canonical embedding o in
R" x C* = R"™. By Proposition covol(a(Ok)) = 27%| A /2.

Consider the set M of elements (y1,..., Y, 21,...,2s) € R" satisfying

1. if » > 0 then

r+3s—1
1] <

1 1
N2, lyi| < 3 fori#1, |z < 5

2. if r =0 then

r+3s—2 1 1
N2 Re(z)] < 5 lal < 5 fori#1

nz1)] < |

It is easy to see that M is compact and symmetric. With a little bit of geometric intuition,
we see that M is convex'% and vol(M) = 2"+ N1/2 = 2" covol(A). Appealing to Minkowski’s
Convex Body Theorem, there exists a non-zero x € Ok such that o(x) € M. We see that
the conjugates of x are all bounded above by a constant depending only on N. Since x
is an algebraic integer, the coefficients of its minimal polynomial are integers. Since such
coefficients are the elementary symmetric polynomials in the conjugates of x, they must all
be bounded above by a constant depending only on N. Thus there are only finitely many
choices for such coefficients. If we can show that K = Q(«) then we are done.
Suppose that » > 0. Then

< |O'1 )|2—(n—1)

HUJ

Recall that | N g(z)| is an integer. It then follows that |oy(x)| > 1. Let 7 be the restriction
of o1 to Q(z). Recall that there are exactly [K : Q(x)] extensions of 7 to an embedding of
K into C. Label such an extension 7. Then

7 (2)| = [on(x)] > 1

10in the r > 0 we have a product of intervals and discs, in the 7 = 0 case, we have a product of a rectangle
with discs

| Nkjo(z)| =
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But there is only one such embedding o; satisfying this property and thus [K : Q(z)] = 1
whence K = Q(z).

Now suppose that » = 0. Then a similar argument shows that |oy(z)| = |1 (x)|. Thus
0;(z) # o1(x) unless o;(z) = 71(x). We need to rule out this case in order for the previ-
ous argument to follow through. Assume that oi(z) = @1(z). Then oy(x) is real and so

Im(oy(x)) = 0. Then
n n 1 1 n—1

Now the norm must be non-zero and integer but this is a contradiction. Hence oy (z) is not
real and oy(z) # 71(z). The argument for the previous case then applies in this situation
and K = Q(x). O

[ Nkjo()] = = |o1(2)]

6 Ramification Theory

Definition 6.1. Let K be a number field and p a prime number. Suppose that pOx admits
the unique factorisation

POk =p1' -9y
We say that p ramifies in K if e; > 2 for some 1 <17 <.

Theorem 6.2. Let K be a nunber field with discriminant A and p a prime number. Then
p ramifies in K if and only if p divides Ak.

Proof. Let xq,...,x, be an integral basis for Og. Recall that
Ag =detT};
where T;; is the matrix corresponding to the linear map
T:0 x O =7
T(z,y) = Trisg(e, y)

evaluated at the basis x1,...,x,. We may ‘reduce’ this mapping modulo p to obtain a
mapping

T : OK/pOK X OK/pOK — Z/pZ

If 7; = 2; (mod pOy) then T is given by the matrix T;; = TrK/@(m).
Then p divides A if and only if p divides det(7};) if and only if det(7;;) = 0. Hence if

suffices to show that p ramifies in K if and only if det(7;) = 0.
Suppose pOf admits the unique factorisation

POk =py' - -p”
By Dedekind’s Theorem[™? we have
Ok [pOk ZFplt]/(hi") & --- @ Fplt]/ (A7)

Hhere we are abusing notation slightly, our trace is understood to be a linear map Ok /pOx — Z/pZ.
2needs clarification: isn’t Dedekind’s only applicable when there exists a power basis for the ring of
integers?
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where hy, ..., h, € F,[t] are distinct irreducible polynomials. We thus see that p ramifies in
K if and only if at least one of the factors in the above decomposition is not a field. Then

T, - 0
T = .
0 - T,

where T); is the trace pairing
T; - Fy[t]/ (') x Fplt]/ (") — Ty

Now suppose, without loss of generality, that e; > 2 and all other e; = 1. It suffices to prove
that det(7;) = 0 and det(T;) # 0 for all 7 # 1.

For the first case, note that F,[t]/(h;) is a finite field. Label it k& with [k : F,] = deg h; = n.
Recall that any finite field is perfect and thus k/FF, is a finite separable extension. By the
primitive element theorem, there exists an z € k such that k = F,(z). Then 1,x,..., 2"}
is an [F)-basis for k. The Im-entry for 7T; is then given by

l+m—2\ __ I+m—2
Tfk/le (ZIZ' ) = E qu
q

where the z, are the conjugates of z. Then

x T,

T = . .
n—1 n—1

xl ‘rn

This is a Vandermonde matrix with determinant det 7; = [[,_,(z, — x,). Recall that the
conjugates of x are exactly the other elements of the basis. Hence z, # x; for all r < s and
thus the determinant is non-zero. This proves the first case.

For the second case, choose y € (hy) (mod (hq)°") such that y # 0. We may extend y to
an F,-basis of F,[t]/(h{*)[’] Note that y* = 0 so every zy is nilpotent. So the trace of zy
is equal to 0 for all z. hence in T, there is a row of zeroes which is the same as det T, = 0
and we are done. O

Corollary 6.3. Let K be a number field. Then there are only finitely many primes that
ramify in K. In particular, at least one prime ramifies in K.

Proof. Let Ak be the discriminant of K. The primes that ramify in K are exactly the
prime divisors of Ag. By the Hermite-Minkowski Theorem, we have |Ag| > 1. From this
we conclude two things. Ag # 0 which means only finitely many primes can ramify in K.
Secondly, Ax must have at least one prime divisor and thus at least one prime ramifies in
K. O

7 Units of Og

Let K be a number field. We denote the multiplicative group of units of K as Uk.

13it is indeed a vector space, we do not need to worry that it is not a field.
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Lemma 7.1. Let K be a number field and p € Ok a root of unity. Then p is a unit. In
particular, the set of all roots of unity in Ok is a subgroup of Uk, which we denote jif .

Proof. Let p be a root of unity. Then p” = 1 for some n € N. Hence p is a root of the
polynomial X™ — 1 which is monic with integer coefficients. Thus p € Ok.

1 is clearly a root of unity itself. Let u,v be two roots of unity. Then there exists,
m,n € N such that g™ = 1 and v" = 1. Then (uv)™ = 1 and so mn is a root of unity.

Furthermore, given any root of unity p such that p® = 1, we have ™ = 17! and so
(u=1)™ = 1 whence the inverse of p is a root of unity. Hence the set of all roots of unity in
Uk is a subgroup. O

Lemma 7.2. Let K be a field and G C K* a finite subgroup. Then K is cyclic and consists
of roots of unity.

Proof. Let n be the least common multiple of the orders of all elements of G. Then z" =1

for all x € GG. Since the polynomial X™ — 1 has at most n distinct roots in K, we have that

|G| < n. Now at least one element of G must have order equal to n so 1,z,...,z" ! are n

distinct elements in G so |G| = n and is generated by z. O

Theorem 7.3 (Dirichlet’s Unit Theorem). Let K be a number field of degree n = r + 2s.
Then

Uk 2 puge © 2751
and pg s cyclic.
Proof. Consider the logarithmic mapping
L:0g\{0} - R"*
Defined by
L(z) = (0g |1 (2)], .. Jog |ov(@)] ..., 210 oy (2)] ., 21og orvss(2)])

First observe that the restriction of L to Uy is a homomorphism between the multiplicative
group of Ok and the additive group of R"*. By an abuse of notation, we will also call this
restriction L. Furthermore, the image of Uk is contained in the hyperplane W C R given
by

Zl’i + Zyj =0
i=1 i=1

Indeed, every x € Uy satisfies Ngg(z) = £1 so

1= H loi(x)| = H |oi()] (H |Ui($)|>

Passing to the logarithm on both sides shows that L(z) is contained in W.
We first claim that for all compact subsets B C W, B’ = L~!(B) is finite. Since B is
bounded there exists an @ € R such that a > 1 and

1
Z < g <
~ <loiz)| < a
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for all x € B’ and for all i = 1,...,r + s. Hence the coefficients of the characteristic
polynomial of x are bounded since they are exactly the elementary symmetric polynomials
in the o;(x). Furthermore, these coefficients are necessarily integers since x € Og. Hence,
given B, there are only finitely many possible characteristic polynomials meaning there are
only finitely many possible x.

We next claim that L(Ug) is discrete and ker L is finite. To prove this claim, we must
first show that L(Ug) N B is finite for every compact subset B C W. We know that L~ (B)
is finite so L(Ux )N B = L(L~(B)) is also finite as desired. Furthermore, ker L = L=1({0}).
Now, {0} is compact and contained is a subset of W so ker L is finite.

By Theorem L(Uk) is a finitely generated Z-module of rank at most m < r+s— 1.

We can summarise this in the following short exact sequence:

0 —— ker L > Uk » L{Ug) —— 0

so that Uk /ker L = L(Uk) = Z™ for some m <r+s— 1.

We now claim that ker L. = ux and is cyclic. It is easy to see that ker L is the set of
all elements of Ux that have finite order. Indeed, since ker L is finite, any x € H must
have finite order. Conversely, suppose that « € Ug\ ker L has finite order. Then L(z) # 0.
But x has finite order so there exists a non-zero natural number m such that 2™ = 1 and
0 = L(1) = L(z™) = mL(x) # 0 which is a contradiction. It then easily follows that
ker L = pg. Furthermore, Lemma [7.2) guarantees that this group is infact cyclic.

We thus see that Ux = px @ Z™ for some m < r + s — 1. To finally prove the theorem,
we need to show that m = r + s — 1. We shall only prove this in the real quadratic case
where r = 2 and s = 0. In this case, we need to prove that there exists a non-trivial unit.

Let Ak be the discriminant of K and o the canonical embedding of K. Set a = |Ag|'/2.
For all [; > 0, let [y be such that [1l; = a. Consider the box

By ={(y1,y2) € R?| |ys| < 1;}}

Then B, is clearly symmetric, convex and compact with volume given by vol(B;) = 41,1y =
4da = 2" covol(c(Ok)). By Minkowski’s Convex Body Theorem, there exists a non-zero
x € BN o(Ok). In other words, there exists a non-zero x € Ok such that |oq(z)| < [; and
|oa(z)| < lo. Observe that

| Ngjo(z)| = |o1(z)oz(r)] < hily =a

Now let I; — 0T. Then there exist infinitely many xy, 25, -+ € O such that |oy(xy)| — 0.
Hence it is clear that there are infinitely many distinct x;, satisfying | Ng/q(zx)| < a. Recall
that z, € Ok is an algebraic integer so the norm must be a rational integer. Hence there
are only finitely many choices for such a norm. Now recall that N((z)) = | Ng/g(x)|. Thus
there are only finitely many choices for N((zx)). We must therefore have that (z;) = (z;)
for some distinct x and x;. But this is equivalent to x/z; being a unit and we are done. [
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